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Abstract 

Financial intermediaries play a key role in the formation of asset prices. More specif-
ically, the increasing importance of non-bank financial intermediaries has raised new 
questions about the risks that hedge funds pose to the financial system. We focus on 
the role that changes in hedge fund exposures play in driving U.S. Treasury prices and 
the yield curve. Using confidential hedge-fund data from the SEC’s Form Private Fund 
(PF), we calculate hedge funds’ aggregate, net Treasury exposures, and their fluctua-
tions over time. We find economically significant and consistent evidence that changes 
in aggregate hedge fund exposures are related to Treasury yield changes. In the cross-
section of hedge funds, we also show that particular strategy groups and lower-levered 
hedge funds display a larger estimated price impact on Treasuries. Finally, asset pric-
ing tests show evidence of positive risk compensation associated with shifts in hedge 
fund Treasury demand. 
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1 Introduction 

Financial intermediaries play a sizeable role in the macroeconomy, directly affecting firms’ 

leverage and investment behavior, and amplifying economic dynamics across booms and re-

cessions (e.g., Bernanke, Gertler, and Gilchrist (1999)). However, the channels through which 

intermediaries affect asset prices are less understood. Recent literature on intermediary-

based asset pricing (e.g., He and Krishnamurthy (2013); Adrian, Etula, and Muir (2014)) 

discusses the idea that the net worth or financial constraints of intermediaries matter in 

asset classes where such institutions act as marginal agents. Risk premia on specific assets 

are determined by the degree to which banks, mutual funds, pension funds, broker-dealers, 

and other non-bank financial intermediaries (NBFI) transact and display demand for them. 

In this study we focus our attention on another prominent type of NBFI, hedge funds, and 

ask how their demand for safe assets affects the valuation of a central asset in the global 

marketplace, U.S. Treasury securities. 

As leveraged and well-informed investors, hedge funds impound information into prices 

through their trades, rendering prices more informative and the market more efficient. At the 

same time, recent events have raised questions about whether hedge funds increase systemic 

risk. For example, as the COVID-related financial turbulence hit U.S. markets in March 

2020, a flight to quality into the most liquid safe assets led to Treasury market volatility 

that widened the Treasury cash-future basis. This widening forced several relative value 

hedge funds to unwind their positions, causing additional market disruptions.1 The financial 

press has also suggested that risk parity and short volatility funds, through their dynamic 

rebalancing, cut back on their positions in response to market volatility. Such deleveraging 

may have exacerbated the market turmoil.2 

Although there is indirect evidence of selling pressure in the Treasury market during 

March 2020, evidence on the general relation between hedge-fund exposures and Treasury 

yields using public or commercially available data has been harder to come by. In this pa-

per, we tackle this issue by directly estimating the price impact of hedge funds in Treasury 

markets. Using information related to hedge funds’ direct holdings from the SEC’s Form 

Private Fund (PF), we compute the total notional exposures (i.e., cash bond and deriva-

tive positions) that hedge funds have to U.S. Treasury markets and their fluctuations over 

time. Further, we exploit the rich cross-sectional heterogeneity of these data to compare the 

1Since March 2020, research on the basis trade has ballooned. See Schrimpf, Shin, and Sushko (2020), 
Barth and Kahn (2021), and Kruttli, Monin, Petrasek, and Watugala (2021). 

2For example, an article in the Wall Street Journal on April 1, 2020, reported, ”Some of the most chaotic 
swings in markets were exacerbated by investors forced into selling by pre-programmed trading strategies 
that react to spikes in volatility.” 
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estimated price impact across funds that implement different types of investment strategies. 

Based on monthly analysis dating from 2013 to the fourth quarter of 2020, we find 

economically significant and robust evidence that changes in hedge-fund exposures are related 

to Treasury yield changes. A one standard deviation increase in the net growth of Treasury 

exposures, which translates to a $41 billion monthly increase in hedge fund net exposures, 

is associated with a 6.2 basis point decline in five-year bond yields. The size of this estimate 

is not sensitive to controlling for well-known macroeconomic drivers of the yield curve, such 

as economic growth and inflation, and exists at various maturities. It is also robust to 

controlling for the valuation effects of yields on exposures and changes in other financial 

entities’ Treasury exposures. 

Moreover, we find differences in the estimated price impacts across funds that trade 

different strategies and use different amounts of leverage. At the strategy level, the net 

exposure changes of managed futures and multi-strategy funds have the most significant 

price impact and relative value funds have a more negligible impact. Similarly, funds with 

ex-ante higher balance sheet leverage have the weakest price impact in Treasury markets. 

These results are surprising from the canonical risk viewpoint. High leverage levels, all else 

equal, could lead to a more significant price impact because the positions are larger. Instead, 

we find the opposite. 

In the paper’s final part, we more directly relate our work to the empirical literature on 

intermediary based asset pricing (e.g., He, Kelly, and Manela (2017)). Using conventional 

asset pricing methods, we treat hedge fund exposures as a possible risk factor to test whether 

it is priced in the cross-section of Treasury returns. While betas to hedge fund exposures and 

the associated price of risk are positive, we find that the price of risk (“lambda”) is imprecisely 

estimated, in particular. The statistical insignificance of the hedge fund lambda is likely 

related to the weak power of the statistical tests due to the limited sample size in the time 

dimension. The inflation lambda suffers from a similar problem unless we extend the sample 

back to the 1950’s. Regardless, the positive lambda associated with hedge fund Treasury 

exposures is consistent with hedge fund Treasury demand as a state variable important for 

pricing Treasuries. 

In the rest of this section, we discuss related research on hedge funds and how our 

paper builds on that research. We describe the SEC Form-PF data in Section 2. Section 3 

provides regression evidence on hedge-fund price impact in the Treasury market. Section 4 

examines whether hedge fund Treasury exposures are a priced risk factor. We summarize 

our conclusions in Section 5. 
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Related Literature 

Our paper is related to two broad strands of research – one on the price impact of asset 

managers, and the other on hedge fund characteristics. What differentiates our paper from 

other research is our focus on hedge fund activity in the Treasury market and our use of 

direct asset class exposures, both long and short, from the SEC Form PF data to study this 

question. 

Shleifer (1986) is one of the earlier works in the market price impact literature that 

focuses on the positive abnormal return of stocks following inclusion into the S&P 500. He 

finds evidence that measures of stock buying by index mutual funds are associated with these 

abnormal returns. Lakonishok, Shleifer, and Vishny (1992) examine end-of-quarter holdings 

data of pension funds and connect cross-manager flows with herding measures. They find 

first that managers do not generally herd (i.e. follow each other) and second that measures 

of excess demand by institutions are not greatly related to price changes in the underlying 

stock. Wermers (1999) extends the herding (or “crowding”) concept to the mutual fund 

space and finds that there is relatively low levels of herding for the average stock but greater 

levels of it for small stocks. An additional contribution that relates to price impact, shows 

that stocks herded into outperform those herded out of. Relative to Lakonishok et al. and 

Wermers our analysis focuses squarely on the Treasury market and uses hedge fund data. 

Using modern day data from the mutual fund industry, Coval and Stafford (2007) show that 

mutual funds that experience large outflows reduce their positions, creating negative price 

pressure on securities they hold. On a somewhat related topic, Frazzini and Lamont (2008) 

show that mutual fund flows, above and beyond some average value, signal negative returns 

in the future. This indicates that mutual fund flows can be considered “dumb money.” 

In a recent and very influential paper, Koijen and Yogo (2019) design an asset pricing 

model that examines the portfolio demand for heterogeneous institutions with short-sale 

constraints (including hedge funds). They take the model to SEC Form 13F data that 

provide quarterly holdings of a number of different institutions, including hedge funds. Using 

the model, they estimate the price impact of demand shocks and show that it has reduced 

in magnitude over time. There are a few ways in which our work is different than Koijen 

and Yogo. First, our use of Form-PF data gives us direct asset class exposures (both long 

and short) on a monthly basis which helps identify market impact; Form 13F only captures 

the long equity side. Second, our focus on Treasury exposures (as opposed to equities) 

distinguishes it substantially from the literature. Finally, we use balance sheet information 

only available through Form PF to characterize the relationship between price impact and 

various fund characteristics. 

As we test price impact across multiple, sorted groups of hedge funds, our work also 
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speaks to the literature on hedge fund characteristics. Ang, Gorovyy, and van Inwegen 

(2011) discuss cross-sectional and time series patterns of hedge fund leverage going back to 

the period of 2004 through 2009. Their data is taken from a proprietary data-set from a 

fund of hedge funds. They find that changes in fund leverage are predictable by aggregate 

factors rather than fund-level characteristics. Bali, Brown, and Caglayan (2014) find that 

cross-sectional dispersion in hedge fund returns are explained by dispersion in fund-level 

betas to measures of macroeconomic uncertainty. This relationship is robust to a number 

of different uncertainty measures. Finally a recent paper by Barth, Hammond, and Monin 

(2020) examines the relationship between leverage and risk-taking in hedge funds. The 

authors find a negative association between return betas and leverage. In our work we also 

derive similar findings as we find that the price impact of highly levered funds is insignificant 

relative to lowly-levered funds. 

2 Data 

Because hedge funds (and their strategies) are private, monitoring their positioning data is 

challenging for policymakers and researchers. To partly overcome this challenge, the Dodd-

Frank Act mandated that SEC-registered private fund advisers (private equity, real estate, 

hedge, and liquidity funds) report various income and balance sheet information for systemic 

risk assessment. In particular, the data collected through SEC Form-PF help our intended 

study because it includes long and short exposure information on US Treasury and related 

derivative assets. Exposure data are available monthly at the fund level, which we aggregate 

to obtain industry-wide series of asset-class exposures. We focus our analysis on the largest 

of hedge funds, also known as qualifying hedge funds, as these funds are required to report 

more frequently.3 

In Figure 1, we display the hedge fund US Treasury exposures aggregated across quali-

fying hedge funds, from long and short positions. All data including these are on a monthly 

frequency from January 2013 through December 2020. As of December 2020, long and short 

positions amounted to roughly $966 and $623 billion, respectively. It is important to note 

that “notional exposures” can correspond to both the holdings of US Treasury securities 

(cash bonds) or exposures to U.S. Treasury (UST) linked derivatives (futures and swaps). 

As the latter category does not require significant expenditure of balance sheet liquidity, 

relative to purchasing Treasury bonds outright, many hedge funds choose to take part in 

3Qualifying Hedge funds are those that have at least $500 million in net asset value (NAV) as of the last 
day prior to a fiscal quarter. Naturally, the count and distribution of qualifying hedge funds shift over time 
as NAV values fluctuate. 
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derivative markets. 

The figure also shows an upward trajectory in the gross notional exposures of Treasuries, 

where gross exposures (sum of long and short positions) grow to a peak in February 2020. 

Coincident with the collapse of financial markets in the following month, total exposures 

drop dramatically both on the short and long end, and do not recover by the end of the year. 

Another interesting pattern that is apparent is the strong correlation between long and short 

exposures. One reason for this is the bond basis trade in which some relative value (RV) 

hedge funds participate. While it is not the focus of this paper, the bond basis trade goes 

long cash Treasury bonds and short Treasury futures. Hence, any movements in aggregate 

trade size, upwards or downwards, would lead to short futures and long cash bond exposures 

moving in tandem. Intuitively, the large decline of the gross exposures in March aligns with 

the evidence of declines in basis trading, as discussed in Barth and Kahn (2021) and Kruttli 

et al. (2021). 

The fact that both long and short exposures move together might suggest that net dynam-

ics will be relatively constant. However, it can be shown that there is strong time-variation 

(and a similar upwards pattern until early 2020) in net positions. Movements in net posi-

tions can be partly attributed to typical strategy re-balancing across non-RV funds, such as 

managed futures funds that execute momentum-based strategies. 

Changes in Hedge Fund Exposures 

In the top two panels of Table 1 we provide summary statistics on hedge fund variables that 

will be actively used in our empirical analysis. Throughout this paper, we will focus on 

changes in exposures as they both statistically account for the non-stationarity in our level 

series and represent an economically meaningful quantity. Changes in the levels of exposures 

can be interpreted as an imprecise measure of flows into or out of Treasury markets.4 As our 

study seeks to examine the price impact of movements in hedge fund demand, the change 

measure is appropriate. 

In the top panel, we show that movements in long, short, and net exposures are on average 

positive with standard deviations of $49, $36, and $41 billion monthly. As the change in net 

exposures gets closer to measuring movement in hedge fund demand, this variable will be of 

key interest to us. We also show in the table that a total of 1,639 funds contributes to the 

Net change measure, in the full time series, with an average of 628 funds per month. 

In the second panel, we decompose the net change measure into specific strategy sub-

types, as these strategy groupings will play a role later on in our analysis. In the Form-PF 

4The imprecision of this variable as a flow measure is because it also includes a price component (it is 
not a pure shift in hedge fund demand). We try to correct for the price component in a later section. 
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data, advisers self-report fund-level strategies. The major groups that appear are multi-

strategy, relative value, macro-based, managed futures, and equity. Across all of these five 

groups, the largest number are classified as multi-strategy funds (441 out of 1639), followed by 

equity (323) and relative value (220). Regarding the volatility of net exposure movements by 

strategy, it seems that multi-strategy funds also contribute the most ($31 billion per month). 

Bond Yield Data 

As our focus is on the US Treasury asset class, we use month-end, zero-coupon bond yields 

from the Federal Reserve Board, estimated using the methodology in Gurkaynak, Sack, and 

Wright (2007). We use this dataset because it provides bond yields at 30 different maturities 

(1Y - 30Y) and focuses on the basic building block of bond pricing the zero-coupon discount 

curve. Studying the curve is important because it is directly related to the assets of interest 

and is a fundamental instrument that enters the pricing of all risky assets by discounting 

future cash flows. It is important to note that all 30 maturities are not necessarily traded and 

are instead imputed from the daily estimation of a term structure model fitted to actively 

traded Treasury bonds.5 

In the bottom panel of Table 1 we display summary statistics of our key dependent 

variable of interest, maturity-specific changes in the level of bond yields. The data presented 

here are in basis points and measure changes from January 2013 through December 2020, 

the same period as hedge fund data are available. On average bond yields decrease over this 

time sample (e.g., the 5Y security decreases -.38 b.p. per month). However, the standard 

deviation is fairly high at roughly 20 basis points per month, across most maturities. In the 

next section we try to explain some of these monthly movements via hedge fund Treasury 

exposures. 

3 Treasury Market Impact 

In this section we focus on the relationship between hedge fund U.S. Treasury exposures and 

movements in bond yields. Traditionally, the literature on hedge fund fire sales and mar-

ket impact focuses on forced de-leveraging during a crisis event. For example, the seminal 

paper by Brunnermeier and Pedersen (2008) discusses a feedback mechanism between fund-

ing liquidity and market liquidity. Shocks to funding conditions can transmit to financial 

markets as asset managers (and other participants) are forced to de-leverage. The result-

ing, potentially large reductions in asset prices can subsequently lead to even greater stress 

5Furthermore, on-the-run and first off-the run security prices are not used in the estimation which suggests 
that the term structure data we use should be interpreted as an “off-the-run term structure.” 
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in funding markets. Beyond the Global Financial Crisis period, a key example of such an 

episode was the recent collapse of Archegos Capital Management. Lending intermediaries 

that were exposed to Archegos’ default risk through total return swaps were forced to sell off 

sizable quantities of risky securities, leading to steep losses both in the underlying securities 

as well as the system. 

In our paper we interpret our hedge fund exposure measures differently. As opposed to 

forced de-leveraging in a crisis episode, it is well known that systematic hedge funds engage 

in various strategies that re-balance as a function of current financial market data and other 

trading signals. These type of strategies often re-balance frequently (weekly or bi-weekly) 

with lower magnitudes of position change. Commonly discussed strategies such as smart 

beta, risk parity and short volatility, momentum trading, and merger or convertible arbitrage 

all rebalance to optimize cross-portfolio hedging and minimize transaction costs relative to 

overall gains on the trade. As we discuss the effects of hedge fund demand or trading, we 

believe that our results will more closely align itself with this form of “lower frequency price 

impact.” Reinforcing this very point, we will later show that our price impact estimates are 

actually weakened by the March 2020 episode – an event where hedge funds dramatically 

shift away from Treasury assets over the course of a few days. 

3.1 Baseline Results 

Our main specifications examine whether movements in hedge fund demand have a contem-

poraneous relationship with movements in US Treasury bond yields. We start with a linear 

regression model 

mΔyt = β0 + βHF ΔHFt 
∗ + βX 

0 Xt + εmt (1) 

mΔyt where is the monthly change in maturity m’s bond yield. On the right hand side ΔHFt 
∗ 

is the raw monthly change (the first difference) in a hedge fund exposure variable (long, short, 

or net). Finally, Xt is a set of controls that include the growth rates of the real industrial 

production index, PCE inflation index, and the total debt outstanding. As discussed in Ang 

and Piazzesi (2003), macroeconomic factors, particularly inflation, are priced in the term 

structure of interest rates. The outstanding supply of debt can naturally have an impact on 

bond yields all else equal. More generally, our inclusion of controls helps us work towards 

isolating the effects of hedge fund positions on bond yields. 

When looking at the long and net variables, we expect that βHF < 0 as an increase in 

hedge fund demand, all else equal, would increase bond prices and reduce bond yields. In 

Table 2, we present results largely in line with these hypotheses. The results are split into 
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three panels, which discuss the effects of long, short, and net growth (from left to right) on 

2Y, 5Y, and 10Y yields (within a panel). Coefficients are scaled to represent the basis point 

effect of a 1 standard deviation movement. For example, a 1 standard deviation movement 

in net growth is associated with a 6.19 basis point drop in the 5Y bond yield. Overall, 

the growth rate of long Treasury exposures seems to be linked with negative and significant 

effects on longer-term bond yields. Most importantly, net growth is significant across all 

the regressions, which is a result that will repeat itself. All standard errors account for 

heteroskedasticty and auto-correlation in residuals. 

To put these estimates into perspective, a standard deviation movement of monthly 5Y 

bond yield changes is roughly 20 basis points. Hence, a typical movement of hedge fund 

demand amounts to a non-trivial (yet non-extreme) movement of bond yields – roughly 

a .25 standard deviation movement of bond yields. Additionally, when we compare the 

movement of net growth with that of inflation, we see the coefficients are roughly similar 

in absolute value (6.2 vs. 6.1 b.p.). Comparing the estimate associated with hedge fund 

exposures with that of inflation is also a good benchmark. Research has established that 

inflation has an out-sized effect on nominal bond yields. 

3.1.1 Reverse Causality 

Due to the frequency of the data, and other omitted variable issues, it is difficult to conclude 

that the results are causal (i.e., that hedge fund demand spikes cause movements in bond 

yields). However, we try to get closer to a causal statement by tackling another issue – reverse 

causation. The hedge fund position data we work with are in market value terms, which 

suggests that downward movements in yields (the outcome variables) might be mechanically 

increasing the market value of hedge fund exposures. If that were the case, the negative 

relationship we observe in the regressions might come from the opposite direction. 

As we do not have the exact maturities, prices, and positions of the U.S. Treasuries that 

underlying hedge funds trade, we examine the robustness of our results using two different 

approaches. First, we scale our growth variables by the return on a five-year Treasury 

security.6 More specifically, we define a new variable, is the

synthetic return of holding a 5Y bond for a month and ΔHFt now represents an adjusted 

growth rate. The rationale behind these modifications is that the adjusted growth rate will 

measure changes in positions above and beyond price movements.7 The top panel of Table 

6The underlying assumption is that the average duration of hedge funds’ Treasury portfolios is five years. 
This is consistent with evidence presented later regarding the maturity-specific impact. 

7To compute the return, we use the zero-coupon structure of bond yields to take the ratio of successive � � �� 
5Y 5YR5Y = P 5Y /P 5Y = exp −5 ∗ y − yt t t−1 t t−1 monthly prices. The synthetic return is given by .
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 ∗

 

1

3 displays the results of this modified regression. We find that scaling hedge fund exposures 

by the return on the 5Y bond does not substantively change the coefficient values. 

Our second approach modifies the net exposure growth variable slightly differently, as-

suming that hedge funds’ average Treasury duration is five years. We decompose the total 

position as HF ∗ = P 5Y × Q∗t t t 
   , where Q∗ 

t is the approximate face value of outstanding Trea-

sury assets and Pt 
5Y is the price of a zero coupon five-year bond (the same that is used 

to compute the return in the previous approach). With this definition of Q∗ 
t , we define: 

. We perform this procedure separately for the long, 

short, and net positions and implement these new variables in our basic regression specifi-

cations. The results are presented in the second panel of Table 3. We find that this form 

of price adjustment has a slightly sharper effect on the net growth elasticities. The absolute 

sensitivities of 5 and 10-year yields shrink slightly from 6.2 to 4.7 and 5.8 to 4.3 basis points. 

However, all results are significant, and the longer-term yields are significant at the 1% level. 

In summary, the baseline results are robust to different methods of controlling for simul-

taneity bias. No method is perfect, however, and moving forward in this paper, we only use 

the raw hedge fund exposure changes scaled by five-year returns (first approach from above) 

as they seem to be stronger. 

3.1.2 Market Impact across Maturities 

In the results above we focused our attention on three maturities. We examine similar effects 

across all 30 maturities in our bond yield dataset in this discussion. Specifically, we examine 

a separate regression for each maturity, like the one in Table 3, and solely focus on movements 

in net exposures as they are economically more meaningful. It will be of the form: 

mΔy = β0 + βHF ΔHFnet,t + βX 
0 Xt + εtt 

where the explanatory variable of interest is the adjusted net growth measure. Hence in 

total there will be 30 regressions. Figure 2 displays the results from these regressions with 

β̂n 
HF and standard error bounds reported for each maturity. In the top panel, The blue line 

shows the point estimates of this regression in basis points, while the grey band reflects the 

95% standard error band surrounding the estimates. In the bottom panel, these coefficients 

are scaled by the volatility of each maturity’s movements in bond yields. 

The figure clearly displays that the association between hedge fund Treasury demand 

and bond yield movements is significant and robust across various maturities. Moreover, 

the coefficient value (blue line) is consistently negative and the standard error bounds rarely 

cross zero. The point estimates are quite similar across maturity which might be attributable 
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to the low-dimensional nature of bonds (e.g., level, slope, curvature). That being said, it is 

also worth observing that the coefficient value increases in absolute value around the 4 - 7Y 

horizon. One way to interpret this finding is that hedge funds tend to take positions closer 

to this medium-term horizon. Of course, this interpretation is not perfectly identified, and 

more granular work is needed to tease out these effects. 

3.1.3 Expected Short Rates vs. Term Premia 

Under the Expectations Hypothesis (EH), longer term bond yields are solely a function of 

expected future short rates (forward rates). However in the data, because the EH does not 

hold (see Campbell and Shiller (1991)), there is an additional term premium component that 

captures the expectations of future excess returns. More precisely, the n-period bond yield 

at time t can be broken up into: 

(2) 

= ESt
n + TPt

n 

A natural question arises from this decomposition. Given hedge fund exposures have a 

relationship with movements in total yields, which component do hedge fund exposures affect 

the most? We answer this by using the flexible term structure model estimated in Adrian, 

Crump, and Moench (2013) and its model output, which decomposes yields into expected 

short rates (ESt) and term premiums (TPt). 

We modify the regression from Equation 2 to account for the new dependent variables: 

ΔESt
n = β0 + βHF ΔHFnet,t + βX 

0 Xt + εt 
(3) 

ΔTPt
n = β0 + βHF ΔHFnet,t + βX 

0 Xt + εt 

The results for these regressions are presented in Table 4. Four panels are presented related 

to the movements in total yields, expected short rates, term premiums, and term premium 

levels. The total yield results are very close to our baseline results from earlier, as we 

would expect. When we look at changes in short rates and term premiums, we see negative 

coefficients for both, but stronger results for the term premium channel. For example, at the 

five-year maturity the ES-related coefficient is -2.7 while that for TP is -3.5. Coefficients 

across maturities in the TP regressions are economically and statistically significant, while 

the same cannot be said for ES. Note that the sum of βHF across the two equations above 

equals the coefficient for total yield changes as the dependent variable. 
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3.1.4 Real Yields and Inflation Compensation 

Another dimension of interest is the decomposition of nominal yields into real yields and 

total inflation compensation (expected inflation and inflation risk premium). As our sample 

is fully contained in the past decade, we take advantage of yield data on Treasury Inflation 

Protected Securities (TIPS) to examine whether hedge fund demand is implicitly associated 

with real yields or inflation compensation. More precisely we modify our baseline regression 

to account for new dependent variables: 

ΔTIPSt
n = β0 + βHF ΔHFnet,t + βX 

0 Xt + εt 
(4) 

nΔ(yt − TIPSt
n) = β0 + βHF ΔHFnet,t + βX 

0 Xt + εt 

where TIPSt
n is the real yield on a bond with maturity n. 

Results for these regressions are presented in Table 5. As TIPS primarily trade at 

longer maturities, we present results for maturities 5Y and above. Within each panel, the 

first column represents results for the baseline result from earlier, while the following two 

columns relate to coefficients from the above equations. It is clear that the coefficient on 

TIPS is larger and more significant at lower maturities, as it decreases in absolute value from 

-3.49 basis points at the five-year horizon to -1.33 b.p. at the longer end. As a percentage 

of the total baseline coefficient, as well, it decreases from 56.4% to 29.8%. An alternative 

interpretation of this result is that movements in hedge fund demand are more greatly 

associated with the (total) inflation compensation in bond yields, as maturity increases. 

3.2 Robustness 

In an ideal world, our baseline measure would reflect an independent or orthogonal movement 

in hedge fund demand. However, there are a few other factors we haven’t directly accounted 

for. Namely, there are other players who exhibit demand for U.S. Treasuries, such as primary 

dealers and foreign investors. Furthermore, as our dependent variables are bond yields, it is 

important to simultaneously account for U.S. monetary policy actions. If hedge funds are 

responding to Federal Reserve actions, we might be masking an underlying driver of yields. 

In this subsection we show that results are robust to controlling for these effects. 

3.2.1 Other Sources of Demand in Treasury Markets 

By construction, primary dealers play an important role in the market making of Treasury 

securities. Often they purchase securities in primary markets (Treasury auctions) to later 

sell them off to other investors such as hedge funds, insurance companies, pension funds, 
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and other financial institutions. In some cases, they also hold on to Treasuries to keep 

active inventory. Due to their important role, we control primary dealer activity in Treasury 

markets using data from the Federal Reserve Bank of New York. We focus on two variables 

of interest – (1) the change in primary dealer net holdings and (2) primary dealer volume. 

The first variable accounts for dealer demand while the second imprecisely measures the 

aggregate market demand for Treasuries, assuming that a large majority of transactions are 

routed through these dealers.8 

In Table 7 we modify the baseline regression specification to include the above two vari-

ables: 

mΔyt = β0 + βHF ΔHFnet,t +ΔP rimHoldt + βX 
0 Xt + εt 

(5) 
mΔyt = β0 + βHF ΔHFnet,t + P rimV olt + βX 

0 Xt + εt 

As the primary dealer holdings variable is a level variable we take its monthly change while 

the primary dealer volume variable is treated as a flow, both at the end of the month. The 

change in primary holdings is additionally scaled by the 5Y bond return, similar to the 

hedge fund exposures. In the table we show that while dealer holdings (and their flows) 

matter for bond yields, they do not fully attenuate the effects of hedge funds. In the case 

of the 5Y Treasury yields for example (see middle panel), we show that the inclusion of 

primary holdings reduces the absolute coefficient from 6.2 to 4.5 b.p. This latter number 

is still statistically significant. We also find that dealer volume is relatively insignificant 

and becomes even weaker as we move to longer durations in the term structure. Moreover, 

as shown in Column 6 of the Table, hedge fund position movements continue to play an 

important role for bond yields, as we control for primary dealer effects. 

A second control we focus on is the foreign investor market for Treasuries. Using the 

Major Foreign Holders table from the Treasury International Capital (TIC) database, we 

are able to construct a monthly time series that accounts for both foreign official holdings 

(e.g., central banks) as well as foreign investors more broadly (e.g. sovereign wealth funds). 

After constructing a series of levels, we again first difference this series and divided by the 

5Y return on Treasuries. The specification here is similar to the one in the baseline results 

except we include the change in foreign holdings. The results of this regression are provided 

in Table 6. We show in the table that again, while movements in foreign holdings significantly 

impact yields, they do not dramatically attenuate the role of hedge funds. In the case of the 

5Y yields, the coefficient attenuates from 6.2 to 5.1 b.p. Meanwhile foreign holdings seem to 

8When computing these variables we only account for data entries related to coupon bonds. We include 
all maturities in our aggregate measure. See https://www.newyorkfed.org/markets/counterparties/ 
primary-dealers-statistics for more details. 
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display a 7.0 b.p. effect on yields in the joint specification. 

3.2.2 Controlling for US Monetary Policy 

As central banks influence the term structure of interest rates, in some cases the longer end 

of the yield curve using large scale asset purchases and quantitative easing, it is important 

to simultaneously account for monetary policy when measuring Treasury market impact. 

Because our left hand side variable is already the change in yields over a month, we need to 

use a differently identified variable to account for policy shifts. As monetary policy can be 

measured in multiple ways, we show that the yield curve is robustly sensitive to hedge fund 

Treasury demand, while controlling for two different policy variables. 

The first policy variable is based on high-frequency movements of the 2-year, on-the run 

Treasury yield, in a 30-minute window surrounding the FOMC announcement. Going back to 

work by Kuttner (2001), Bernanke and Kuttner (2005), and Gurkaynak, Sack, and Swanson 

(2005), high-frequency movements of interest rates surrounding FOMC announcements help 

in the identification of an unexpected monetary policy surprise. In some cases, the surprising 

nature of the high-frequency change might even be in the opposite direction of the target rate 

shift altogether. Furthermore, our use of the 2 year maturity is advantageous as it fluctuates 

in both the conventional and zero lower bound periods (e.g., Hanson and Stein (2015)). 

For robustness sake, the second policy variable we examine focuses on the monetary 

policy shock developed by Bu, Rogers, and Wu (2021). This shock uses the entire term 

structure of the zero-coupon Treasury yield curve (1 – 30Y) to identify shocks via a Fama-

Macbeth type procedure. Because securities from the longer end are used, it appropriately 

accounts for movements in interest rates due to large-scale asset purchases. To aggregate 

both of these FOMC day shocks to a monthly frequency, we sum all shocks that occur in a 

month. For all months where FOMC announcements or significant news do not occur, we 

set shock values to 0.9 

In Table 8 we display results while including the monetary policy shocks. In the first two 

columns we display the baseline specification and a regression including the 2Y shock term 

(“Onrun2”), respectively. The following two columns do the same, using the Bu et al. (2021) 

shock (“BRW”), while limiting the sample to its availability. As our BRW data series ends 

in December 2019, there are 12 fewer months compared to the full sample. We see across 

all three yield maturities, top to bottom, monthly yield changes load significantly on 2Y 

monetary policy-related interest rate movements. Above and beyond these policy-related 

effects, movements in hedge fund Treasury exposures continue to matter significantly for 

9This procedure of aggregating high frequency shocks to a lower frequency is common in the literature 
(e.g., Ottonello and Winberry (2020)). 
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bond yields. In column 2, many of these coefficients in fact jump in absolute size. Similar 

results hold in column 4 when we control for the BRW shock. 

3.3 Fund Heterogeneity and Market Impact 

The next part of our Treasury analysis zeroes in on bond market price sensitivity, based 

on fund-level heterogeneity. While the time series length of the SEC Form-PF data is 

relatively short, we have a wide cross-section of funds characterized by multiple dimensions. 

For this study, we focus on two popular dimensions – fund-specific strategy and balance 

sheet leverage, to understand whether differently grouped funds have different relationships 

with financial market prices. We realize that there are several cross-sectional dimensions 

that would be interesting to look at given the characteristics available in the Form-PF 

dataset. However, the motivation for examining these two dimensions, partly stems from 

behavior in the March 2020 episode, where highly-levered, relative value funds were thought 

to account for large Treasury movements before Federal Reserve actions. Moreover, in this 

subsection, we look at full sample market impact across fund groups, while in the next one 

(3.4) we contextualize March 2020 relative to other periods with notable Treasury exposure 

movements. 

3.3.1 Impact by Strategy 

Using the Form-PF data, we can classify funds by strategy based on their self-reported 

strategy-specific data.10 In Figure 3, we look at the top 5 strategies based on their long 

exposure to US Treasuries, as a percentage of total long exposure across all hedge funds. On 

average, multi-strategy and relative value funds tend to be those with the largest Treasury 

exposures at roughly 32 and 26% of the entire universe, respectively. This is followed by 

macro (17.9%), managed futures (4.3%), and equity funds (2.4%). We exclude strategy 

categories with smaller exposures as their sensitivities are unlikely to contribute to the overall 

hedge-fund activity. 

Based on the strategy-level decompositions of long and short exposures, we run the 

following regression: 
5Y + β0 = β0 + βHF,sΔHF s Δyt net,t X Xt + εt (6)

where ΔHF s 
net,t reflects the net growth for strategy s, which is one of the top 5 categories

10One of the questions on the Form asks that funds self-report the percentage of NAV going towards a 
strategy (equity, macro, relative value, event driven, credit, managed futures, or fund of funds). We classify 
a fund as targeting one of these strategies if that strategy meets a 75% threshold. If no strategy satisfies 
this, we classify it as a multi-strategy fund. 
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P 
ΔHF s 

s net,t = 

ΔHFnet,t

presented above. Note that the sum of exposure changes across all strategies, 

, the variable used in most of our tests from earlier. 

Table 9 displays the results for these regressions where control variables are excluded for 

brevity’s sake. Besides equity-focused funds, all other major types of funds display negative 

sensitivities as we would expect. In particular, multi-strategy and managed futures funds 

display statistically significant effects. By contrast, the estimated coefficients on changes in 

exposures for relative value funds are insignificantly negative despite the role they may have 

played in the March 2020 disruptions in the US Treasury market. One potential reason for 

this is regarding the types of trades that relative value funds might engage in. Assuming 

that these funds are heavy Treasury basis traders, movements in their net exposures would 

be relatively insignificant. The reason is, that movements in long positions (cash Treasury 

bonds) would be offset by movements in short positions (futures). Hence their net trading 

behavior would be less dynamic, and its effects would be relatively diminished. 

3.3.2 Impact by Leverage Type 

Our second characteristic-based test focuses on a popular indicator of firm or institutional 

risk – balance sheet leverage. As SEC Form-PF provides data on the market value of gross 

assets and net assets we compute a classical leverage measure – the ratio of gross to net 

assets. The higher this value is for a given fund, one could make the argument that that 

fund poses a larger risk of influencing market prices, conditional on selling off assets. Put 

simply, as per this logic, higher leverage funds should have a larger absolute βHF . 

Gross and net asset data are quarterly within the Form-PF dataset, so to build our “high 

leverage” Treasury exposure series we use a sorting algorithm similar to what is used in 

portfolio construction. Using the latest value of leverage strictly prior to time t, we bucket 

firms into deciles of leverage. Funds in the top 20% are deemed high leverage funds, while 

the remaining 80% are deemed low leverage funds. After doing so, we build our long, short, 

and net level series based on the funds in each respective group (low and high leverage). The 

first difference in the net series (scaled by the return on the 5Y bond) becomes our data of 

interest. We run three regressions: 

m + β0 = β0 + βHF,LΔHF L Xt + εt Δyt net,t X 

m Δy = β0 + βHF,H ΔHF H + β0 Xt + εtt net,t X 

(7) X 
mΔy = β0 + βHF,iΔHF i + β0 Xt + εtt net,t X 

i∈{L,H} 
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Table 10 displays the results for these regressions. In the table’s top panel, we focus on 

results with the high leverage group defined as the top 20% of ex-ante leverage. The bottom 

panel performs robustness with the cutoff defined as the top 10%. We find across both panels 

that high leverage types seem to have a negligible, statistically insignificant impact on bond 

yields. For example, at the 5-year maturity, movements in exposures of relatively leverage 

funds have a -5.7 to -5.8 b.p. association with contemporaneous bond yields. In contrast, 

the high leverage funds only have a -1.7 to -2.3 b.p. impact. Similar results hold at the 2Y 

and 10Y maturities. 

Why didn’t the original logic hold? One possibility is that there is clear self-selection 

taking place. The high leverage hedge funds (such as relative value and macro funds) take 

on safer, less dynamic strategies that do not impact market conditions. Meanwhile the 

low leverage types (such as risk parity, short volatility, and momentum funds) take on less 

leverage because they place outright, exposed bets on various assets. As a result, their 

strategies are more responsive to market conditions and their exposures might be more 

strongly correlated with market prices. A related point is made in Barth et al. (2020) where 

hedge fund leverage is shown to display a negative relationship with return market betas and 

return volatilities. While the focus in the former is on examining return risk versus balance 

sheet characteristics, we more directly examine hedge funds role towards market prices. The 

two, however, are related. 

3.4 March 2020 in Context 

In March 2020, riskier asset classes such as credit, commodity, and equity markets all experi-

enced tremendous declines. More surprisingly, the U.S. Treasury market also found itself in 

a volatile, downward trajectory in early March, before policy announcements in mid-to-late 

March.11 Many recent papers suggest that a reduction in basis trading by relative value 

funds is a key reason behind the Treasury sell-off (e.g., Schrimpf et al. (2020), Barth and 

Kahn (2021)). In an ideal world we would have intra-month data to examine the proportion-

ate response of daily (or higher frequency) bond yields to negative movements in hedge fund 

Treasury exposures. But, unfortunately, the Form-PF data is monthly and doesn’t allow us 

to perform such an analysis. That being said, we can still discuss how March 2020 factors 

into our price impact analysis. 

We start by examining major events in Treasury markets where funds increase or decrease 

their net positions in a large manner. After sorting months based on their absolute change in 

11While the early part of 2020 featured a downwards movement in interest rates, rates climbed over the 
first few weeks of March. For example, the 5 year yield jumped from 46 b.p. on March 9 to 79 b.p. on 
March 18. 
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net exposures, scaled by that month’s 5-year Treasury gross returns, we focus our attention 

on the top 15 months. Table 11 provides a list of these top months. In the third column from 

the right, we provide the total change. For example, the top month turns out to be December 

2013, when hedge funds posted a $106 billion reduction in net UST exposures. In the same 

Table, we also list the percentage contribution of each strategy towards this total. For 

example, the interpretation of the Multi-Strategy column would be that 63.93% × $106.1 = 

$67.8 billion of the total reduction in exposures was due to this class of funds. 

Naturally, we would expect March 2020 to make this list, and indeed it does. It turns 

out to be the eleventh largest month, with a $70.1 billion reduction in scaled, net exposures. 

While this is surprising compared to the steep drop in position levels observed in Figure 1, it 

is reasonable considering that both long and short positions dropped simultaneously in that 

month. Further, as net (and not long or short) positions that are consistently and robustly 

associated with bond yield movements, the exposure reductions in March 2020 might be less 

important than it initially seems, for the sake of price impact. A second observation from 

the same Table focuses on the absolute role of Multi-Strategy hedge funds. We see across 

all 15 events the sizable role that this hedge fund group plays. There are many months 

where they account for a large proportion of total movements (> 75%) and are the largest 

driver of aggregate exposure changes. Particularly in March of 2020, in which relative value 

hedge funds had extreme reductions in their positions (109.3% of the total), multi-strategy 

hedge funds displayed the exact opposite effect at a larger rate (-113.0% of total). To that 

end, Multi-Strategy funds displayed a more common “flight-to-safety” type behavior that 

we would expect in a crisis episode. 

Beyond this basic analysis of strategy-specific Treasury market demand, we examine how 

March 2020 might have influenced our price impact estimates. In Figure 4 we present scatter 

plots, by strategy, of changes in scaled net exposures against movements in the 5 year yield. 

Only the top 15 months are plotted and the slopes of the fitted, dashed lines represent crude 

estimates of market impact by strategy. Note that in each plot, all net exposure movements 

are scaled by the overall volatility of that strategy’s exposure movements. If our story held 

perfectly across all strategies, it would be the case that all points would either lie in the 

top-left or bottom-right quadrants. Why? Negative movements in net exposures would be 

associated with depressed bond prices and positive movements in yields. Meanwhile positive 

movements would be associated with the opposite. 

Overall, these four graphs are consistent with this story. In particular, all 15 months 

line up perfectly in these two quadrants for Multi-Strategy funds. For Managed Futures, 14 

of 15 months also line up. Meanwhile, Macro and Relative Value funds each have at least 

three months that do not align. Most importantly, March 2020 (identified by red labeling) 
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seems to be an outlier weakening price impact estimates. Particularly in the case of Relative 

Value, we see that March 2020 served as a roughly -5 standard deviation event, despite 

yields diminishing. Only Multi-Strategy funds displayed the “right” sign on its March 2020 

behavior. In Figure 5, we examine whether removing the monetary policy component of 

yield changes helps these figures. We show that, indeed the outlier effect of March 2020 is 

attenuated (see Figure (b), for example); however, the effect is not fully corrected. 

In summary, the evidence we explore suggests that March 2020, while an extreme move-

ment in long and short UST positions, was not a historically large movement in net positions 

or net demand. That being said, it plays a significant role in biasing the measurement of 

price impact, particularly for Relative Value and Macro funds. Meanwhile, Multi-Strategy 

funds display behavior that is time-invariant and dominant towards the identification of the 

overall price effect. 

4 Hedge Fund Exposures as a Risk Factor 

Standard asset-pricing theory (e.g., Ljungqvist and Sargent (2012), Cochrane (2005)) pre-

dicts that state variables that are procyclical or represent “good states of the world” should 

carry a positive risk premium in equilibrium. When the asset returns are more exposed to 

these states (i.e., have higher betas), investors should be compensated to hold them as they 

do not serve as a hedge to aggregate risk. In this section, we investigate the idea that hedge 

fund Treasury demand serves as such a priced risk factor in the cross section of Treasury 

assets. This economic rationale comes from the hypothesis that fluctuations in hedge fund 

exposures capture the overall industry’s ability and willingness to trade in the Treasury 

market. 

The idea that hedge funds or more broadly, financial intermediary characteristics might 

matter for asset prices is not a new one. He and Krishnamurthy (2013) discusses the idea 

that financial intermediary constraints are theoretically a driving force behind the pricing of 

institutionally-held assets, such as mortgage-based securities. Two recent papers empirically 

test these conceptual ideas, using broker dealers’ balance sheet information. First, Adrian 

et al. (2014) show that shocks to the leverage of broker-dealers are priced in a large number of 

cross-sectional portfolios. Similarly, He et al. (2017) show that shocks to the equity capital 

ratio of financial intermediaries (mainly primary dealers) are priced in a number of risky 

asset classes including Treasuries, equities, corporate and sovereign bonds, and currencies.12 

Finally, a recent paper by Du, Hebert, and Li (2022) suggests that constrained dealer activity 

12Interestingly, both of these papers draw significant yet contradictory results using datasets that are 
inherently linked. 
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in U.S. Treasury markets can be linked to the slope of the yield curve. We show that due 

to the time series length of our data, we unfortunately won’t be able to draw as precise 

conclusions as these authors do. However, the hedge fund exposure data provide a fresh and 

unique perspective that is highly connected to these earlier ideas. As many of these dealers 

and prime brokers directly interact with hedge funds, the parallels are natural. 

4.1 Model Overview 

We investigate a standard cross-sectional asset pricing model (e.g., Ross (1976)), where we 

measure risk compensation for the key hedge fund factor from earlier, ΔHFnet,t. The model 

we estimate will be of the form: 

E [Rit − Rft] = βHF 
i λHF + βX

i0 λX (8) 

In the above equation, the left-hand side variable represents the excess return on an asset i, 

βi 
HF is the exposure of asset i’s excess returns to movements in hedge fund Treasury holdings, 

and λHF is the risk compensation for each additional unit of β. Similar statements hold for 

βX and λX . Note that the estimate of λHF will be different from E [ΔHFnet,t] as it is not a 

tradable factor (see Cochrane (2005) for a larger discussion). 

If high levels of hedge fund net exposure growth are truly a positive state of the world, 

with lower marginal utilities for intermediaries, then we would expect that assets that load 

on it at a higher rate (a higher βi ) HF would yield higher expected returns. Put differently, our

hypothesis is that λHF > 0. Following the results from the bond yield regressions earlier, 

we also test two alternative factors in addition to hedge fund exposures – real industrial 

production growth and inflation. 

Estimation Details 

To estimate the key parameters, we take advantage of the full cross-section of the Gurkaynak 

et al. (2007) dataset. As there are 30 maturities of zero-coupon bond data available (1Y

– 30Y

 

), we compute the one-month holding period return of purchasing an n-period bond 

at time t and selling it off as an n − 1 period bond at t + 1. Such a procedure is repeated 

across all 30 maturities at each point in time.13 Through this procedure we build a panel of 

30 returns from January 2013 through December of 2020. To compute excess returns we use 

the 1-month Treasury bill rate from the St. Louis Federal Reserve Economic Data (FRED). 

13As a simple example, for the 5Y bond, we compute a return assuming that an investor purchases it as a 
60-month bond and sells it off as a 59 month bond the following period. In order to derive the zero coupon 
bond yield on the 59 month bond, we linearly interpolate across the yield curve at that point in time. 
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Following Hansen and Singleton (1982) and Cochrane (2005), we use the generalized 

method of moments (GMM) to jointly estimate the following Θ̂ in one step: n 
Θ̂ = 

o 
β̂1Y β̂2Y β̂30Y ˆ ˆλHF , λX, , . . . , , 

Performing the joint estimation allows us to avoid the errors-in-variables problem that arises 

from estimating parameters using the Fama-Macbeth two step procedure. More specifically, 

our GMM criterion function is of the form: 

0 
gT (X|Θ) WgT (X|Θ) 

where  and xt indicates all relevant bond return and factor data

at a point in time. In terms of moment conditions, the following restrictions are used per 

maturity: 

Hence g(xt|Θ) will be a stacked set of these moments. For sake of simplicity, we set W as 

the identity matrix and allow for heteroskedasticty and autocorrelation when estimating the 

covariance matrix of g (xt|Θ).14 

4.2 Results 

In Table 12, we present results related to our baseline estimation. There are four models 

we separately estimate: (1) a single factor model with industrial production growth, (2) a 

model with inflation, (3) a model with movements in hedge fund Treasury exposures, and 

(4) a joint model of inflation and the hedge fund factor. In Model 1, we show that economic 

growth is barely priced in the nominal term structure over this period, as β’s and λ are 

jointly insignificant. Meanwhile, Models 2 and 3 show that inflation and hedge fund β’s are 

significant and increasing across the board. Finally, in Model 4, we show that both factor 

β’s are significant in the joint specification. While the return exposures are significant, the 

average prices of risk are not. The inflation price of risk, λπ, is negative but insignificant in 

14In an ideal world one could use the two-step or iterative step estimation algorithm. Due to issues inverting 
the resulting spectral density matrix from an iterative algorithm, we use the identity weight matrix. We also 
confirm that our estimates are of similar sign and magnitude as those that arise from a Fama-Macbeth type 
procedure. 
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Models 2 and 4. A similar story holds for the hedge fund price of risk. 

It is worth mentioning that signs on parameters related to the two key factors (inflation 

and hedge fund Treasury demand) are economically intuitive. Hedge fund betas are positive, 

as movements in Treasury demand increase prices and holding period returns. Similarly, 

λHF , while insignificant, does maintain a positive point estimate as hypothesized earlier. 

Analogous statements can be drawn for inflation in the opposite direction. Because high 

inflation is a negative state of the world, nominal bonds are negatively exposed to it (βπ
i < 0) 

and bonds that pay out in those states (i.e. with higher betas) act as a hedge (λ̂ 
π < 0). 

While the estimates of λ are imprecise, the cross-sectional fit of the model is a different 

story. In the top two panels of Figure 6, we plot cross-sectional betas of returns concerning 

inflation and hedge fund Treasury exposures against expected excess returns. The slopes of 

the fitted lines in both diagrams correspond roughly to the λ estimates. While the standard 

errors of these λ estimates are imprecise, it is clear from these figures that there is a stark 

visual relationship between hedge fund Treasury beta and average expected returns. In the 

bottom panel, we show the overall fit of the model (expected returns in the data vs. fitted 

returns of the model). The fitted line is very close to a 45-degree line here. 

4.3 Role of Sample Size 

While we try to help the identification of the λHF through a broad set of cross-sectional 

assets, it turns out that the restrictive monthly time series (only 95 months in total) plays a 

key role in the imprecise estimates. In this subsection we argue that the imprecise estimates 

of the price of risk are partially due to the time series length. One key variable that we would 

expect to be priced unequivocally is inflation. Both statistically and in terms of economic 

intuition, many studies have shown a significant inflation risk premium component embedded 

in the nominal yield curve (see Bansal and Shaliastovich (2013)). The fact that it does not 

show up as a priced risk factor is puzzling here. While we cannot extend the hedge fund 

dataset back further we can look at the role of inflation if we were to extend it to a longer 

bond return dataset going back. 

Using Fama US Treasury bond portfolios available through Wharton Research Data 

Services (WRDS) we extend our analysis going back to January 1952. While the cross-

section is not as large with a maximum of 12 Treasury portfolios, the time series length ends 

up helping substantially. In Table 13, we display results from the historical pricing of a one 

factor model (PCE inflation). Similar to our results earlier in Table 12, the β estimates are 

all negative and significant. What is different, however, is the significance of λπ. Inflation 

carries a negative risk premium in Treasury returns, and the length of the time series matters 
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greatly. For robustness, we cut the sample in two ways, (1) capturing the full cross section 

of 12 securities (going back to February 1959) and (2) only capturing a cross section of 11 

securities (going back to January 1952). Results are qualitatively consistent across both 

setups. 

While we cannot say with one hundred percent certainty that risks related to hedge fund 

Treasury demand are an aggregate risk factor carrying a significant, positive risk premium, 

we can say that the sample size contributes to the estimate’s imprecision. In this exercise 

we extend the time series length and focus on inflation to show that even a variable of great 

importance in Treasury markets suffers the same statistical issues when it faces a short time 

series. 

4.4 Price of Risk by Strategy and Leverage Type 

Analogous to earlier tests involving fund heterogeneity and bond yields, we investigate the 

risk compensation of hedge fund Treasury exposures by fund grouping. We start by estimat-

ing separate, two-factor models incorporating both inflation and movements in net hedge 

fund exposures by strategy: 

E [Rit − Rft] = βi λHF,s + βi0 λπ HF,s π (9)

where λHF,s indicates the risk premium for a particular strategy s. The results to these 

strategy-specific estimations are provided in Table 14. We do not display inflation-related 

estimates for brevity. Our results suggest that only two strategies display positive beta’s 

and λ’s with respect to that strategy’s net Treasury exposure movements – multi-strategy 

and managed futures. These results are in line with the yield regression results where hedge 

fund demand only mattered for prices so far as it arose from multi-strategy and managed 

futures funds. 

The last specification of the model jointly takes into account inflation and net exposure 

movements from low leverage and high leverage hedge funds, separately. Hence, in total 

three variables are tested as risk factors. In Table 15, we display these results and conclude 

that movements in net exposures of low leverage funds are responsible for the positive λ 

that is attributable to overall movements in hedge fund exposures. Only inflation and the 

low leverage factor display significant beta’s as well. These results align with the regression 

evidence from earlier, where we use changes in bond yields as the dependent variable. 
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5 Conclusion 

To shed light on how hedge funds might affect prices and possibly amplify underlying shocks, 

we estimate the monthly market impact of changes in net hedge fund exposures on U.S. 

Treasury yields. The association between yields and hedge fund demand is economically 

and statistically significant, and is robust to several potential mitigating factors, including 

reverse causality, the activity of other prominent players in Treasury markets, and monetary 

policy. We also find interesting results in the cross section when we examine hedge funds by 

strategy or leverage type. Furthermore, March 2020, which does not display a historically 

large reduction in net exposures, does seem to serve as an outlier that biases the absolute 

magnitude of price impact estimates. 

Overall, these findings indicate that the trading activities of hedge funds can be linked 

to market price movements. At the same time, it is important to recognize that these 

findings do not show that hedge funds are the sole or decisive driver of price fluctuations in 

the Treasury market. Neither are they necessarily the source or originator of fundamental 

shocks that cascade through the financial system. Clearly, there are other forces that drive 

price movements in those markets. Extrapolating from this last point, it might be difficult 

to demonstrate that hedge fund trading during the March 2020 episode was the principal 

force behind the large fluctuations in Treasury yields and the decrease in liquidity. However, 

they might have served the role of an amplification mechanism. 

24 



References 

Adrian, T., R. K. Crump, and E. Moench (2013). Pricing the term structure with linear 
regressions. Journal of Financial Economics 110 (1), 110–138. 

Adrian, T., E. Etula, and T. Muir (2014). Financial intermediaries and the cross-section of 
asset returns. The Journal of Finance 69 (6), 2557–2596. 

Ang, A., S. Gorovyy, and G. B. van Inwegen (2011). Hedge fund leverage. Journal of 
Financial Economics 102 (1), 102–126. 

Ang, A. and M. Piazzesi (2003). A no-arbitrage vector autoregression of term structure dy-
namics with macroeconomic and latent variables. Journal of Monetary Economics 50 (4), 
745–787. 

Bali, T. G., S. Brown, and M. O. Caglayan (2014). Macroeconomic risk and hedge fund 
returns. Journal of Financial Economics 114 (1), 1–19. 

Bansal, R. and I. Shaliastovich (2013, 01). A Long-Run Risks Explanation of Predictability 
Puzzles in Bond and Currency Markets. The Review of Financial Studies 26 (1), 1–33. 

Barth, D., L. Hammond, and P. Monin (2020). Leverage and risk in hedge funds. OFR 
Working Paper . 

Barth, D. and R. J. Kahn (2021, April). Hedge funds and the treasury cash-futures discon-
nect. OFR Working Paper . 

Bernanke, B. S., M. Gertler, and S. Gilchrist (1999). Chapter 21 the financial accelerator in 
a quantitative business cycle framework. Volume 1 of Handbook of Macroeconomics, pp. 
1341–1393. Elsevier. 

Bernanke, B. S. and K. N. Kuttner (2005). What explains the stock market’s reaction to 
federal reserve policy? The Journal of Finance 60 (3), 1221–1257. 

Brunnermeier, M. K. and L. H. Pedersen (2008, 11). Market Liquidity and Funding Liquidity. 
The Review of Financial Studies 22 (6), 2201–2238. 

Bu, C., J. Rogers, and W. Wu (2021). A unified measure of fed monetary policy shocks. 
Journal of Monetary Economics 118, 331–349. 

Campbell, J. Y. and R. J. Shiller (1991). Yield spreads and interest rate movements: A 
bird’s eye view. The Review of Economic Studies 58 (3), 495–514. 

Cochrane, J. H. (2005). Asset Pricing: Revised Edition. Princeton University Press. 

Coval, J. and E. Stafford (2007). Asset fire sales (and purchases) in equity markets. Journal 
of Financial Economics 86 (2), 479–512. 

Du, W., B. Hebert, and W. Li (2022). Intermediary balance sheet constraints and the 
treasury yield curve. Working Paper . 

25 



Frazzini, A. and O. Lamont (2008). Dumb money: Mutual fund flows and the cross-section 
of stock returns. Journal of Financial Economics 88 (2), 299–322. 

Gurkaynak, R. S., B. Sack, and E. Swanson (2005, May). Do Actions Speak Louder Than 
Words? The Response of Asset Prices to Monetary Policy Actions and Statements. In-
ternational Journal of Central Banking 1 (1). 

Gurkaynak, R. S., B. Sack, and J. H. Wright (2007). The u.s. treasury yield curve: 1961 to 
the present. Journal of Monetary Economics 54 (8), 2291–2304. 

Hansen, L. P. and K. J. Singleton (1982). Generalized instrumental variables estimation of 
nonlinear rational expectations models. Econometrica 50 (5), 1269–1286. 

Hanson, S. G. and J. C. Stein (2015). Monetary policy and long-term real rates. Journal of 
Financial Economics 115 (3), 429–448. 

He, Z., B. Kelly, and A. Manela (2017). Intermediary asset pricing: New evidence from 
many asset classes. Journal of Financial Economics 126 (1), 1–35. 

He, Z. and A. Krishnamurthy (2013, April). Intermediary asset pricing. American Economic 
Review 103 (2), 732–70. 

Koijen, R. S. J. and M. Yogo (2019). A demand system approach to asset pricing. Journal 
of Political Economy 127 (4), 1475–1515. 

Kruttli, M., P. Monin, L. Petrasek, and S. Watugala (2021, July). Hedge fund treasury 
trading and funding fragility: Evidence from the covid-19 crisis. FEDS Working Paper . 

Kuttner, K. N. (2001). Monetary policy surprises and interest rates: Evidence from the fed 
funds futures market. Journal of Monetary Economics 47 (3), 523–544. 

Lakonishok, J., A. Shleifer, and R. W. Vishny (1992). The impact of institutional trading 
on stock prices. Journal of Financial Economics 32 (1), 23–43. 

Ljungqvist, L. and T. J. Sargent (2012). Recursive Macroeconomic Theory, Third Edition. 
Number 0262018748 in MIT Press Books. The MIT Press. 

Ottonello, P. and T. Winberry (2020). Financial heterogeneity and the investment channel 
of monetary policy. Econometrica 88 (6), 2473–2502. 

Ross, S. A. (1976). The arbitrage theory of capital asset pricing. Journal of Economic 
Theory 13 (3), 341–360. 

Schrimpf, A., H. S. Shin, and V. Sushko (2020, April). Leverage and margin spirals in 
fixed income markets during the Covid-19 crisis. BIS Bulletins 2, Bank for International 
Settlements. 

Shleifer, A. (1986). Do demand curves for stocks slope down? The Journal of Finance 41 (3), 
579–590. 

26 



Wermers, R. (1999). Mutual fund herding and the impact on stock prices. The Journal of 
Finance 54 (2), 581–622. 

27 



Figure 1: Hedge Fund Exposures to US Treasuries 
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This figure displays monthly, aggregate long and short exposures to US Treasury securities from January 

2013 through September 2020 for qualifying hedge funds in the Form-PF universe. Exposures include 

outright holdings of Treasury securities and derivative contract holdings (eg. futures). 

28 



Figure 2: Sensitivities to HF Exposures, Across Maturities 
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This figure describes the results from projecting bond yield changes onto the (adjusted) net growth in HF 

exposures, across various maturities. The top panel states sensitivities in basis point terms while the 

bottom panel in standardized terms. All regressions include controls from the main text and the solid blue 

line provides the coefficient of interest. The grey band reflects the 95% standard error band surrounding 

the estimates. All standard errors account for auto-correlation in residuals (Newey-West). See text for 

more details. 
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Figure 3: Long Treasury Exposures by HF Strategy Type 
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This figure displays the percentage of total HF long exposures by fund strategy type. The top 5 strategies, 

by average long exposure percentages, are displayed. See text for more details. 
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Figure 4: Exposure Movements vs. Yields Across Notable Events 
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This figure displays scatter plots of strategy-level exposure movements against corresponding movements in 

monthly yields. A total of 15 points are displayed, which correspond to months with large absolute changes 

in net exposures. The precise months are listed in Table 11. Yield changes are in basis points while 

exposure movements are demeaned and scaled by full sample, strategy-level means and standard 

deviations. The data point corresponding to March 2020 is specifically marked. 
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Figure 5: Exposure Movements vs. Yields, Controlling for Monetary Policy 

4 2 0 2 4
Exposure Movements (std. dev.)

40

20

0

20

40

5Y
 Y

ie
ld

 C
ha

ng
es

 (b
.p

.)

Mar-20

Multi-Strategy

4 2 0 2 4
Exposure Movements (std. dev.)

40

20

0

20

40

5Y
 Y

ie
ld

 C
ha

ng
es

 (b
.p

.)

Mar-20

Relative Value

(a) Multi-Strategy Funds (b) Relative Value Funds 

4 2 0 2 4
Exposure Movements (std. dev.)

40

20

0

20

40

5Y
 Y

ie
ld

 C
ha

ng
es

 (b
.p

.)

Mar-20

Macro

4 2 0 2 4
Exposure Movements (std. dev.)

40

20

0

20

40

5Y
 Y

ie
ld

 C
ha

ng
es

 (b
.p

.)

Mar-20

Managed Futures

(c) Macro Funds (d) Managed Futures Funds 

This figure displays scatter plots of strategy-level exposure movements against corresponding movements in 
monthly yields that are corrected for monetary policy movements. A total of 15 points are displayed, which 
correspond to months with large absolute changes in net exposures. The precise months are listed in Table 

5YΔyt − β̂mst  11. Yield changes are in basis points and computed as h   , ˆw ere βm is the fitted coefficient from 
the regression: 

5YΔy = β0 + βmst + ηtt 

Here, st is the surprise change in the 2Y On-the-Run monetary shock, as described in Section 3.2.2. 

Meanwhile, exposure movements are demeaned and scaled by full sample, strategy-level means and 

standard deviations. The data point corresponding to March 2020 is specifically marked. 
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Figure 6: Factor Betas vs. Treasury Returns 
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In this Figure, the top two graphs represent scatter plots of estimated beta coefficients against average 

Treasury returns, based on estimates from a 2-factor asset pricing model including inflation and the net 

hedge fund UST exposures variable. The bottom graph displays the model’s fit against the average returns 

in the data. See main text for more details. 
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Table 1: Summary Statistics 

Mean Stdev 25% 75% Num Periods Total Num Funds Avg Num Funds 

Change in Exposures ($, Billions) 

Long 4.45 49.12 -23.45 37.94 95 1523 573.82 
Short 3.91 36.20 -11.32 18.55 95 1272 454.24 
Net 0.54 40.90 -26.00 30.98 95 1639 627.66 

Change in Net Exposures by Strategy 

Multi-Strategy 0.46 31.46 -19.87 20.81 95 441 160.30 
Relative Value -0.24 16.31 -6.89 8.40 95 220 76.91 
Macro 0.02 12.92 -7.70 7.68 95 203 75.15 
Managed Futures 0.12 11.03 -7.18 7.11 95 79 30.22 
Equity 0.16 5.59 -1.74 2.32 95 323 81.84 
Total 0.54 40.90 -26.00 30.98 95 1639 627.66 

Bond Yield Changes (b.p.) 

1Y -0.08 13.10 -1.97 7.19 96 – – 
3Y -0.21 16.70 -6.24 11.09 96 – – 
5Y -0.38 19.42 -10.69 11.55 96 – – 
10Y -0.92 20.38 -13.31 10.67 96 – – 
15Y -1.33 19.68 -11.39 11.49 96 – – 
20Y -1.50 19.20 -10.75 11.03 96 – – 
30Y -1.32 19.17 -12.23 11.05 96 – – 

This table provides summary statistics of key variables used throughout the paper. The top panel 

examines the time series properties of aggregated Long, Short, and Net hedge fund exposures to US 

Treasuries. The right two columns display the total number of funds throughout the sample and average 

funds per month. The second panel breaks down net exposures by strategy and provides similar statistics. 

The bottom panel displays summary statistics on the Gurkaynak et al. (2007) bond yield dataset within 

our time sample of interest, January 2013 through December 2020. 
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Table 2: Treasury Market Impact of HF Demand 

2Y 5Y 10Y 2Y 5Y 10Y 2Y 5Y 10Y 

Long Growth -1.59 
(2.76) 

-5.19* 
(2.98) 

-5.29** 
(2.39) 

Short Growth 1.95 
(2.17) 

0.29 
(1.80) 

-0.31 
(1.60) 

Net Growth -3.44*** 
(1.19) 

-6.19*** 
(1.44) 

-5.81*** 
(1.29) 

IndPro 0.33 
(1.33) 

-1.67 
(1.76) 

-2.39 
(1.79) 

0.19 
(1.10) 

-2.17 
(1.42) 

-2.91* 
(1.60) 

0.60 
(1.45) 

-1.40 
(1.77) 

-2.18 
(1.78) 

InflPCE 3.19*** 
(1.10) 

6.82*** 
(1.46) 

7.96*** 
(1.57) 

2.66*** 
(1.00) 

6.16*** 
(1.71) 

7.40*** 
(1.86) 

2.95** 
(1.15) 

6.10*** 
(1.40) 

7.24*** 
(1.54) 

Debt Growth -0.72 
(0.92) 

-0.98 
(1.46) 

-0.92 
(1.58) 

-0.23 
(0.81) 

-0.48 
(1.18) 

-0.53 
(1.34) 

-0.38 
(0.94) 

-0.16 
(1.45) 

-0.12 
(1.47) 

R2 
N 

0.06 
95 

0.14 
95 

0.16 
95 

0.07 
95 

0.08 
95 

0.10 
95 

0.10 
95 

0.18 
95 

0.18 
95 

This table describes the results of the baseline regression of bond yield changes on HF growth variables and 

controls. Each panel examines a different demand variable; within a panel each column examines a 

different bond yield. Coefficients are scaled to represent the basis point movement of yields with respect to 

a standard deviation movement in explanatory variables. Standard errors are provided in parentheses and 

*, **, *** indicate significance at 10%, 5%, and 1% levels respectively. All standard errors account for 

auto-correlation in residuals (Newey-West). See text for more details. 
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Table 3: Treasury Market Impact of HF Demand, Controlling for Prices 

2Y 5Y 10Y 2Y 5Y 10Y 2Y 5Y 10Y 

Adjusting Exposures by Treasury Returns 

Long Growth, Adj -1.64 
(2.72) 

-5.24* 
(2.93) 

-5.32** 
(2.35) 

Short Growth, Adj 1.92 
(2.15) 

0.28 
(1.79) 

-0.30 
(1.60) 

Net Growth, Adj -3.45*** 
(1.18) 

-6.19*** 
(1.42) 

-5.82*** 
(1.27) 

R2 0.06 0.15 0.16 0.07 0.08 0.10 0.10 0.18 0.18 
N 95 95 95 95 95 95 95 95 95 

Alternative Price Adjustment 

Long Growth, Alt 0.83 
(2.69) 

-1.99 
(2.79) 

-2.12 
(2.13) 

Short Growth, Alt 3.87* 
(1.99) 

2.84* 
(1.47) 

2.24* 
(1.34) 

Net Growth, Alt -2.37* 
(1.35) 

-4.68*** 
(1.65) 

-4.32*** 
(1.43) 

R2 0.05 0.09 0.11 0.11 0.10 0.11 0.08 0.13 0.14 
N 95 95 95 95 95 95 95 95 95 

This table describes the results from including growth variables adjusted for price movements. The top 

panel uses an adjustment methodology where hedge fund exposure variables are scaled by gross Treasury 

returns, while the bottom panel scales the exposure and its lag by price levels. Control variables are 

included in the regressions but not displayed for brevity. Each sub-panel examines a different demand 

variable; within a panel, each column examines a different bond yield. Coefficients are scaled to represent 

the basis point movement of yields with respect to a standard deviation movement in explanatory 

variables. Standard errors are provided in parentheses and *, **, *** indicate significance at 10%, 5%, and 

1% levels respectively. All standard errors account for auto-correlation in residuals (Newey-West). See text 

for more details. 
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Table 4: Risk Premium Decomposition of Treasury Market Impact 

2Y 5Y 10Y 2Y 5Y 10Y 

Net Growth, Adj 

IndPro 

InflPCE 

Debt Growth 

Total Yields 

-3.41*** 
(1.17) 

-6.20*** 
(1.42) 

-5.89*** 
(1.29) 

0.61 
(1.45) 

-1.40 
(1.77) 

-2.23 
(1.80) 

2.92** 
(1.14) 

6.10*** 
(1.39) 

7.32*** 
(1.57) 

-0.38 
(0.93) 

-0.16 
(1.45) 

-0.13 
(1.49) 

Expected Short Rates 

-1.57 
(1.48) 

-2.72* 
(1.41) 

-2.73** 
(1.20) 

2.24 
(1.80) 

1.26 
(1.60) 

0.75 
(1.34) 

1.29 
(1.35) 

1.86* 
(1.12) 

1.95** 
(0.94) 

0.23 
(1.14) 

0.11 
(1.10) 

0.07 
(0.96) 

R2 
N 

0.10 0.18 0.18 
95 95 95 

0.06 0.08 0.09 
95 95 95 

Net Growth, Adj 

IndPro 

InflPCE 

Debt Growth 

Term Premiums 

-1.83** 
(0.91) 

-3.47*** 
(0.77) 

-3.16*** 
(1.19) 

-1.62*** 
(0.59) 

-2.66*** 
(0.90) 

-2.99** 
(1.31) 

1.63** 
(0.66) 

4.23*** 
(0.92) 

5.37*** 
(1.25) 

-0.61 
(0.43) 

-0.26 
(0.82) 

-0.20 
(1.11) 

Term Premium (Levels) 

1.82 
(1.25) 

1.91 
(2.83) 

2.47 
(4.49) 

-2.95 
(1.87) 

-4.93 
(3.90) 

-6.34 
(5.36) 

0.08 
(1.59) 

-2.56 
(3.25) 

-2.83 
(4.77) 

-9.18*** 
(1.49) 

-20.19*** 
(3.30) 

-27.39*** 
(4.69) 

R2 
N 

0.09 0.17 0.12 
95 95 95 

0.14 0.14 0.12 
95 95 95 

This table describes the results from decomposing yield changes (“Total Yields”) into movements due to 

those in expected future short rates and term premiums. The decomposed yield data are taken from 

updated estimates by Adrian et al. (2013). Each panel examines a different component of yield changes; 

within a panel, each column examines a different maturity. The bottom right panel additionally looks at 

HF exposure effects on term premium levels. Coefficients are scaled to represent the basis point movement 

of yields with respect to a standard deviation movement in explanatory variables. Standard errors are 

provided in parentheses and *, **, *** indicate significance at 10%, 5%, and 1% levels respectively. All 

standard errors account for auto-correlation in residuals (Newey-West). See text for more details. 
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Table 5: Real Yields and Treasury Market Impact 

5Y Yields 

Total TIPS Residual 

7Y Yields 

Total TIPS Residual 
Net Growth, Adj -6.19*** 

(1.42) 
-3.49* 
(1.98) 

-2.70* 
(1.60) 

-6.31*** 
(1.36) 

-3.11* 
(1.65) 

-3.20** 
(1.32) 

IndPro -1.41 
(1.77) 

-2.59 
(2.38) 

1.19 
(1.27) 

-1.91 
(1.83) 

-2.78 
(2.05) 

0.87 
(1.02) 

InflPCE 6.11*** 
(1.40) 

0.58 
(2.50) 

5.53*** 
(2.00) 

6.92*** 
(1.54) 

2.17 
(2.31) 

4.75*** 
(1.60) 

Debt Growth -0.16 
(1.45) 

-4.02 
(2.62) 

3.86** 
(1.69) 

-0.11 
(1.53) 

-3.57* 
(2.11) 

3.46*** 
(1.21) 

R2 
N 

0.18 0.07 0.18 
95 95 95 

0.18 0.08 0.19 
95 95 95 

10Y Yields 

Total TIPS Residual 

20Y Yields 

Total TIPS Residual 
Net Growth, Adj -5.82*** 

(1.27) 
-2.29 
(1.48) 

-3.54*** 
(1.08) 

-4.47*** 
(1.26) 

-1.33 
(1.35) 

-3.14*** 
(0.95) 

IndPro -2.19 
(1.78) 

-2.39 
(1.80) 

0.20 
(0.82) 

-2.75 
(1.79) 

-1.83 
(1.67) 

-0.93 
(0.69) 

InflPCE 7.24*** 
(1.54) 

2.84 
(2.17) 

4.41*** 
(1.33) 

7.44*** 
(1.68) 

3.32* 
(1.96) 

4.12*** 
(1.03) 

Debt Growth -0.11 
(1.47) 

-3.28** 
(1.66) 

3.17*** 
(0.85) 

0.05 
(1.23) 

-2.62** 
(1.29) 

2.68*** 
(0.69) 

R2 
N 

0.18 0.07 0.20 
95 95 95 

0.16 0.07 0.19 
95 95 95 

This table describes the results from decomposing yield changes (“Total”) into movements due to real 

yields (“TIPS”) and compensation for inflation (“Residual”). Real yields are taken from the TIPS yield 

curve. Each panel examines a different maturity of yield changes. Coefficients are scaled to represent the 

basis point movement of yields with respect to a standard deviation movement in explanatory variables. 

Standard errors are provided in parentheses and *, **, *** indicate significance at 10%, 5%, and 1% levels 

respectively. All standard errors account for auto-correlation in residuals (Newey-West). See text for more 

details. 
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Table 6: Foreign Treasury Demand and HF Price Impact 

HF 

2Y Yields 

Foreign Both HF 

5Y Yields 

Foreign Both HF 

10Y Yields 

Foreign Both 

Net Growth, Adj -3.45*** 
(1.18) 

-2.82** 
(1.22) 

-6.19*** 
(1.42) 

-5.12*** 
(1.72) 

-5.82*** 
(1.27) 

-4.52*** 
(1.60) 

ForHold Growth, Adj -4.61* 
(2.41) 

-4.14* 
(2.44) 

-7.88*** 
(2.56) 

-7.04*** 
(2.66) 

-9.33*** 
(2.47) 

-8.58*** 
(2.54) 

IndPro 0.60 
(1.45) 

1.87 
(1.65) 

2.04 
(1.91) 

-1.41 
(1.77) 

0.72 
(1.93) 

1.05 
(2.33) 

-2.19 
(1.78) 

0.52 
(1.97) 

0.80 
(2.26) 

InflPCE 2.95*** 
(1.14) 

2.56 
(1.56) 

2.55* 
(1.50) 

6.11*** 
(1.40) 

5.44*** 
(1.99) 

5.44*** 
(1.73) 

7.24*** 
(1.54) 

6.43*** 
(2.08) 

6.43*** 
(1.84) 

Debt Growth -0.38 
(0.94) 

0.13 
(0.94) 

0.23 
(1.13) 

-0.16 
(1.45) 

0.69 
(1.32) 

0.87 
(1.65) 

-0.11 
(1.47) 

0.98 
(1.35) 

1.14 
(1.59) 

R2 0.10 0.14 0.18 0.18 0.23 0.29 0.18 0.29 0.34 
N 95 95 95 95 95 95 95 95 95 

This table describes the results from including growth rates of foreign holdings of US Treasury securities, 

as given through Treasury International Capital (TIC) data. Each panel examines a different yield 

maturity. Coefficients are scaled to represent the basis point movement of yields with respect to a standard 

deviation movement in explanatory variables. Standard errors are provided in parentheses and *, **, *** 

indicate significance at 10%, 5%, and 1% levels respectively. All standard errors account for 

auto-correlation in residuals (Newey-West). See text for more details. 
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Table 7: The Role of Primary Dealers Towards HF Price Impact 

2Y Yields 

(1) (2) (3) (4) (5) (6) 

Net Growth, Adj 

PrimHold Growth, Adj 

PrimVol 

-3.45*** 
(1.18) 

-5.48*** 
(0.95) 

-2.25** 
(1.07) 
-4.85*** 
(1.19) 

-4.53* 
(2.47) 

-3.06** 
(1.24) 

-4.37* 
(2.64) 

-2.01* 
(1.05) 
-4.42*** 
(1.08) 
-3.93* 
(2.29) 

R2 0.10 0.17 0.19 0.14 0.18 0.26 
N 95 95 95 96 95 95 

5Y Yields 

(1) (2) (3) (4) (5) (6) 

Net Growth, Adj -6.19*** 
(1.42) 

-4.52*** 
(1.30) 

-6.00*** 
(1.50) 

-4.42*** 
(1.30) 

PrimHold Growth, Adj -8.03*** 
(1.13) 

-6.77*** 
(1.38) 

-6.60*** 
(1.41) 

PrimVol -2.54 
(3.17) 

-2.25 
(3.35) 

-1.59 
(2.87) 

R2 0.18 0.23 0.28 0.10 0.19 0.28 
N 95 95 95 96 95 95 

10Y Yields 

(1) (2) (3) (4) (5) (6) 

Net Growth, Adj 

PrimHold Growth, Adj 

PrimVol 

-5.82*** 
(1.27) 

-7.25*** 
(1.31) 

-4.33*** 
(1.26) 
-6.05*** 
(1.45) 

-1.54 
(3.39) 

-5.69*** 
(1.40) 

-1.48 
(3.52) 

-4.27*** 
(1.29) 
-5.95*** 
(1.55) 
-0.89 
(3.16) 

R2 0.18 0.21 0.25 0.10 0.18 0.25 
N 95 95 95 96 95 95 

This table describes the results from including variables related to primary dealer U.S. Treasury demand. 

Two key variables are used – the growth rate of primary dealer Treasury holdings and monthly volume of 

primary dealer trading. Control variables are included in the regressions but not displayed for brevity. 

From top to bottom, each panel examines a different yield maturity. Coefficients are scaled to represent the 

basis point movement of yields with respect to a standard deviation movement in explanatory variables. 

Standard errors are provided in parentheses and *, **, *** indicate significance at 10%, 5%, and 1% levels 

respectively. All standard errors account for auto-correlation in residuals (Newey-West). See text for more 

details. 
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Table 8: Monetary Policy and HF Price Impact 

2Y Yields 

(1) (2) (3) (4) 

Net Growth, Adj 

Onrun2 

BRW 

Full Sample Y Y N N 
MP Shock Sample Y Y Y Y 
R2 0.10 0.28 0.17 0.20 
N 95 95 83 83 

5Y Yields 

(1) (2) (3) (4) 

Net Growth, Adj 

Onrun2 

BRW 

Full Sample 
MP Shock Sample 
R2 
N 

-3.45*** 
(1.18) 

-3.95*** 
(0.99) 
6.35*** 
(1.88) 

-4.93*** 
(0.98) 

-4.79*** 
(0.95) 

2.56** 
(1.16) 

-6.19*** 
(1.42) 

-6.77*** 
(1.24) 

-8.21*** 
(1.11) 

-8.03*** 
(1.13) 

7.28*** 
(1.65) 

3.46* 
(1.81) 

Y Y N N 
Y Y Y Y 
0.18 0.31 0.25 0.29 
95 95 83 83 

10Y Yields 

(1) (2) (3) (4) 

-5.82*** 
(1.27) 

-6.28*** 
(1.16) 

-7.24*** 
(1.15) 

-7.13*** 
(1.16) 

5.79*** 
(1.48) 

2.22 
(1.97) 

Net Growth, Adj 

Onrun2 

BRW 

Full Sample Y Y N N 
MP Shock Sample Y Y Y Y 
R2 0.18 0.26 0.22 0.23 
N 95 95 83 83 

This table describes the results from including variables accounting for monetary policy surprises. Two key 

variables are tested – the surprise change in the 2Y On-the-Run security surrounding an FOMC 

announcement (“Onrun2”) and the monetary shock constructed in Bu et al. (2021). Control variables are 

included in the regressions but not displayed for brevity. From top to bottom, each panel examines a 

different yield maturity. Coefficients are scaled to represent the basis point movement of yields with respect 

to a standard deviation movement in explanatory variables. Standard errors are provided in parentheses 

and *, **, *** indicate significance at 10%, 5%, and 1% levels respectively. All standard errors account for 

auto-correlation in residuals (Newey-West). See text for more details. 
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Table 9: Treasury Market Impact of HF Demand, Across Strategy 

Total Multi-strategy Relative Value Macro Managed Futures Equity 

Net Growth, Adj -6.19*** 
(1.42) 

-3.94*** 
(1.40) 

-1.67 
(2.46) 

-1.07 
(2.24) 

-10.45*** 
(1.17) 

1.98** 
(0.90) 

R2 0.18 0.12 0.08 0.08 0.36 0.09 
N 95 95 95 95 95 95 

This table describes the regression results when breaking out the exposures by strategy type and focusing 

on the response of 5Y bond yields. Control variables are included in the regressions but not displayed for 

brevity. Each column examines a different strategy type based on exposure growth within funds associated 

with that strategy. Coefficients are scaled to represent the basis point movement of yields with respect to a 

standard deviation movement in explanatory variables. Standard errors are provided in parentheses and *, 

**, *** indicate significance at 10%, 5%, and 1% levels respectively. All standard errors account for 

auto-correlation in residuals (Newey-West). See text for more details. 
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Table 10: Treasury Market Impact of HF Demand, by HF Leverage 

High Leverage as Top 20% 

2Y 5Y 10Y 

Net Growth, Total -3.20*** 
(1.19) 

-5.88*** 
(1.48) 

-5.62*** 
(1.29) 

Net Growth, Low Lev -4.27*** 
(1.62) 

-4.27** 
(1.69) 

-5.85*** 
(1.55) 

-5.77*** 
(1.58) 

-4.62*** 
(1.40) 

-4.52*** 
(1.42) 

Net Growth, High Lev -0.22 
(2.63) 

-0.08 
(2.48) 

-2.53 
(2.87) 

-2.34 
(2.62) 

-3.44 
(2.66) 

-3.29 
(2.51) 

R2 0.10 0.13 0.05 0.13 0.17 0.17 0.09 0.18 0.17 0.15 0.12 0.17 
N 95 95 95 95 95 95 95 95 95 95 95 95 

High Leverage as Top 10% 

2Y 5Y 10Y 

Net Growth, Total -3.20*** 
(1.19) 

-5.88*** 
(1.48) 

-5.62*** 
(1.29) 

Net Growth, Low Lev -3.97*** 
(1.21) 

-4.00*** 
(1.40) 

-5.87*** 
(1.33) 

-5.69*** 
(1.42) 

-5.10*** 
(1.22) 

-4.84*** 
(1.26) 

Net Growth, High Lev -0.13 
(2.43) 

0.30 
(2.54) 

-2.33 
(2.71) 

-1.71 
(2.78) 

-2.98 
(2.55) 

-2.46 
(2.65) 

R2 0.10 0.12 0.05 0.12 0.17 0.17 0.09 0.18 0.17 0.16 0.12 0.17 
N 95 95 95 95 95 95 95 95 95 95 95 95 

This table describes the regression results when breaking out movements in hedge fund exposures by ex-ante fund leverage type. Each month, high 

leverage funds are those that fall into the top 20 or 10% of balance sheet leverage (gross assets divided by net assets) in the cross-section, the 

quarter end prior to the month of interest. Control variables are included in the regressions but not displayed for brevity. The top panel classifies 

high leverage funds as those that fall in the top 20% while the bottom focuses on the top 10%. Coefficients are scaled to represent the basis point 

movement of yields with respect to a standard deviation movement in explanatory variables. Standard errors are provided in parentheses and *, **, 

*** indicate significance at 10%, 5%, and 1% levels respectively. All standard errors account for auto-correlation in residuals (Newey-West). See 

text for more details. 



Table 11: Notable Movements in HF Treasury Market Demand 

Rank Year Month Multi-Strategy (% of Total) Relative Value Macro Managed Futures Equity Total ($, billions) 5YΔy (b.p.) 5YΔynonmp 

1 2013 12 63.93 11.02 4.13 26.95 -0.78 -106.11 36.29 37.00 
2 2017 3 82.10 8.24 5.63 -0.37 -6.65 -78.96 2.65 16.12 
3 2018 5 48.95 1.50 23.19 10.61 -0.86 78.63 -11.21 -9.88 
4 2020 2 43.45 45.68 -9.67 10.86 4.16 77.74 -40.41 -40.41 
5 2018 1 45.24 8.90 27.35 20.08 -7.71 -77.10 33.38 28.91 
6 2015 10 50.97 -2.17 19.38 8.17 6.39 -75.99 15.56 -0.94 
7 2013 5 5.30 43.27 12.34 9.56 2.34 -75.85 36.49 34.43 
8 2015 3 89.93 -15.26 15.87 8.18 4.33 74.05 -13.14 3.62 
9 2013 10 35.01 17.26 12.22 17.13 1.85 72.18 -8.23 -11.22 
10 2014 12 42.98 9.97 29.89 9.63 -0.12 -70.19 14.96 30.20 
11 2020 3 -112.99 109.30 33.08 19.16 6.91 -70.16 -47.12 -16.34 
12 2015 1 13.66 55.58 24.58 2.20 -0.59 67.31 -46.93 -46.08 
13 2019 4 77.66 -19.17 16.82 0.49 3.17 -65.60 4.80 4.80 
14 2018 8 87.90 5.58 -9.26 5.16 -2.23 65.04 -9.26 -11.32 
15 2016 1 83.15 2.34 1.05 23.76 2.31 64.92 -42.10 -36.65 
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This Table lists the top 15 months where absolute changes of net hedge fund exposures were at an all time high. The third column (“Total”) from 

the right displays the raw change in net UST exposures scaled by gross Treasury return. The five columns to the left (“Multi-Strategy” through 

“Equity”) display strategy-specific, scaled net exposure changes as a percentage of the total. The two columns on the right provide the basis point 

change in yield over the month and the change corrected for monetary policy surprises. See text for more details. 



Table 12: Aggregate Pricing of Hedge Fund Risk 

Model 1 
IP t(IP) 

Model 2 
Infl t(Infl) 

Model 3 
HF t(HF) Infl t(Infl) HF t(HF) 

β1Y -0.06 -1.27 -0.01 -0.41 0.03 0.66 -0.02 -1.05 0.01 

Model 4 

0.71 
β2Y -0.06 -0.06* -1.72 0.08** 2.04 -0.06*** -2.67 0.07*** 3.16 
β3Y -0.07** -2.15 -0.12*** -3.01 0.15*** 3.32 -0.13*** -3.94 0.15*** 4.06 
β4Y -0.08** -2.23 -0.19*** 

-1.6 

-3.42 0.23*** 3.65 -0.2*** 0.23*** 4.36 
β5Y -0.08** -2.02 -0.26*** -3.48 0.3*** 3.71 -0.27*** -4.21 4.51 
β6Y -0.09* -1.78 -0.33*** -3.5 0.36*** 3.74 -0.35*** -4.23 0.39*** 

0.31*** 
4.62 

β7Y -0.1 -1.59 -0.4*** -3.54 0.42*** 3.77 -0.42*** -4.29 0.45*** 

-4.2 

4.71 
β9Y -0.1 -1.43 -0.47*** -3.61 0.47*** 3.81 -0.48*** -4.38 0.51*** 4.77 
β9Y -0.11 -1.31 -0.53*** -3.68 0.52*** 3.83 -0.55*** -4.48 0.55*** 4.77 
β10Y -0.11 -1.22 -0.59*** -3.74 0.56*** 3.83 -0.61*** -4.58 0.6*** 4.72 

λ -5 -0.48 -0.43 -1.16 -0.34 -0.68 0.11 0.24 
Time Series Length 
Number of Assets 
Standard Errors 

95 
30 

Newey-West with Bartlett Kernel Smoothing 

0.62 1.16 

This table describes GMM estimation results of model parameters (return betas and factor prices of risk), 

when estimating the model in Equation 8. Each panel examines a different factor structure – (1) only 

industrial production growth, (2) only PCE inflation, (3) aggregate movements in hedge fund exposures, 

and (4) inflation and hedge fund exposures jointly. Parameter standard errors are provided in the second 

column of each panel and *, **, *** indicate significance at 10%, 5%, and 1% levels respectively. All 

standard errors account for auto-correlation in residuals (Newey-West). See text for more details. 
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Table 13: Historical Pricing of Inflation Risk 

Const 
Long Sample 1 Long Sample 2 
t(Const) Infl t(Infl) Const t(Const) Infl t(Infl) 

β6M 0.04*** 6.4 0.01 0.63 0.04*** 6.66 0 0.42 
β12M 0.07*** 4.57 -0.03 -1.37 0.06*** 4.7 -0.03 -1.59 
β18M 0.09*** 4.11 -0.06** -2.08 0.09*** 4.21 -0.06** -2.25 
β24M 0.11*** 3.76 -0.09** -2.48 0.1*** 3.83 -0.08** -2.55 
β30M 0.13*** 3.72 -0.12*** -2.97 0.12*** 3.82 -0.12*** -2.96 
β36M 0.15*** 3.77 -0.15*** -3.29 0.14*** 3.85 -0.14*** -3.22 
β42M 0.17*** 3.81 -0.18*** -3.63 0.16*** 3.88 -0.17*** -3.5 
β48M 0.17*** 3.61 -0.2*** -3.6 0.17*** 3.68 -0.19*** -3.45 
β54M 0.18*** 3.49 -0.24*** -3.91 0.17*** 3.54 -0.22*** -3.67 
β60M 0.18*** 3.28 -0.25*** -3.81 0.18*** 3.37 -0.23*** -3.57 
β120M 0.22*** 3.29 -0.33*** -4.26 0.21*** 3.38 -0.31*** -3.94 
β>120M 0.31*** 2.91 -0.61*** -4.72 – – – – 

λ 0.07*** 2.68 -0.43** -2.25 0.05*** 3.02 -0.56** -2.19 

Time Series Length 
Number of Assets 
Standard Errors 

616 661 
12 11 
Newey-West with Bartlett Kernel Smoothing 

This table describes GMM estimation results of model parameters (return betas and factor prices of risk), 

when estimating the model in Equation 8 using historical bond return data. Each panel examines a 

different historical sample. Parameter standard errors are provided in the second column of each panel and 

*, **, *** indicate significance at 10%, 5%, and 1% levels respectively. All standard errors account for 

auto-correlation in residuals (Newey-West). See text for more details. 

46 



Table 14: Pricing by Hedge Fund Strategy 

Multi-Strategy 
Est t(Est) 

Relative Value 
Est t(Est) 

Macro 
Est t(Est) 

Managed Futures 
Est t(Est) 

Equity 
Est t(Est) 

β1Y 0.03* 1.75 -0.02 -1.04 -0.01 -0.64 0.03*** 3.05 -0.01 -0.5 
β2Y 0.08*** 2.81 -0.01 -0.3 0 -0.09 0.12*** 6.49 -0.03 -1.55 
β3Y 0.13*** 3.33 0.01 0.18 0.01 0.12 0.24*** 8.47 -0.06** -2.33 
β4Y 0.17*** 3.26 0.04 0.5 0.02 0.27 0.38*** 9.04 -0.08** -2.41 
β5Y 0.2*** 2.97 0.08 0.72 0.04 0.4 0.51*** 9.03 -0.1** -2.25 
β6Y 0.22*** 2.67 0.13 0.9 0.07 0.52 0.63*** 8.89 -0.12** -2.08 
β7Y 0.24** 2.39 1.05 0.09 0.62 0.74*** 8.73 -0.14* -1.95 
β8Y 0.24** 2.16 0.23 1.19 0.12 0.7 0.83*** 8.52 -0.16* -1.87 
β9Y 0.25** 1.97 0.27 

0.18 

1.3 0.15 0.77 0.91*** 8.25 -0.18* -1.82 
β10Y 0.25* 1.81 0.32 1.39 0.18 0.83 0.98*** 7.92 -0.2* -1.8 

λ 0.32 0.55 -0.32 -0.59 -0.42 -0.43 0.14 0.43 -0.47 -0.55 

Time Series Length 
Number of Assets 
Standard Errors 

95 
30 

Newey-West with Bartlett Kernel Smoothing 

This table describes GMM estimation results of model parameters (return betas and factor prices of risk), 

when estimating the model in Equation 8 using each strategy-specific time series of movements in hedge 

fund net exposures. Each panel examines a separte estimation for that strategy. Parameter standard errors 

are provided in the second column of each panel and *, **, *** indicate significance at 10%, 5%, and 1% 

levels respectively. All standard errors account for auto-correlation in residuals (Newey-West). See text for 

more details. 
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Table 15: Pricing by Hedge Fund Leverage Type 

Infl t(Infl) HF lowlev t(HF lowlev) HF highlev t(HF highlev) 
β1Y -0.02 -1.49 0.03** 2.33 -0.02 -0.88 
β2Y -0.06*** -3.11 0.08*** 3.47 -0.01 -0.12 
β3Y -0.12*** -3.73 0.15*** 4 0.02 0.25 
β4Y -0.19*** -3.67 0.23*** 4.22 0.05 0.51 
β5Y -0.27*** -3.63 0.29*** 4.26 0.09 0.69 
β6Y -0.34*** -3.66 0.34*** 4.22 0.13 

0.16 
0.82 

β7Y -0.41*** -3.74 0.39*** 4.15 0.91 
β8Y -0.48*** -3.85 0.43*** 4.07 0.2 0.97 
β9Y -0.54*** -3.97 0.46*** 3.98 0.23 1.02 
β10Y -0.6*** -4.08 0.49*** 3.88 0.26 1.05 

λ -0.8 -0.91 0.11 0.26 -0.84 -0.56 

Time Series Length 
Number of Assets 
Standard Errors 

95 
30 

Newey-West with Bartlett Kernel Smoothing 

This table describes GMM estimation results of model parameters (return betas and factor prices of risk), 

when estimating the model in Equation 8 using three factors simultaneously – inflation, changes in 

exposures for low leverage funds, and changes in exposures for high leverage funds. Parameter standard 

errors are provided in the second column of each panel and *, **, *** indicate significance at 10%, 5%, and 

1% levels respectively. All standard errors account for auto-correlation in residuals (Newey-West). See text 

for more details. 
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