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Does Unusual News Forecast Market Stress?

Harry Mamaysky and Paul Glasserman∗

Abstract

We find that an increase in the “unusualness” of news with negative sentiment predicts

an increase in stock market volatility. Our analysis is based on more than 360,000 articles

on 50 large financial companies, mostly banks and insurers, published in 1996–2014. We

find that the interaction between measures of unusualness and sentiment forecasts volatility

at both the company-specific and aggregate level. These effects persist for several months.

The pattern of response of volatility in our aggregate analysis is consistent with a model

of rational inattention among investors.
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1 Introduction

Can the content of news articles forecast market stress and, if so, what type of content is

predictive? Several studies have documented that news sentiment forecasts market returns. We

find that a measure of “unusualness” of news text combined with sentiment forecasts stress,

which we proxy by stock market volatility. The effects we find play out over months, whereas

in most prior work the stock market’s response to news articles dissipates in a few days.

The link between sentiment expressed in public documents and stock market returns has

received a great deal of attention. At an aggregate level, Tetlock (2007) finds that negative

sentiment in the news depresses returns; Tetlock, Saar-Tsechansky, and Macskassy (2008) study

company-specific news stories and responses. Garcia (2008) finds that the influence of news

sentiment is concentrated in recessions. Loughran and McDonald (2011) and Jegadeesh and

Wu (2013) apply sentiment analysis to 10-K filings. Da, Engelberg, and Gao (2014) measure

sentiment in Internet search terms. Manela and Moreira (2015) find that a news-based measure

of uncertainty forecasts returns. Our focus differs from prior work because we seek to forecast

market stress rather than the direction of the market. We apply new tools to this analysis, going

beyond sentiment word counts.

The importance of unusualness is illustrated by the following two phrases, both of which

appeared in news articles from September 2008:

“the collapse of Lehman”

“cut its price target”

Both phrases contain one negative word and would therefore contribute equally to an overall

measure of negative sentiment in a standard word-counting analysis. But we recognize the first

phrase as much more unusual than the second, relative to earlier news stories. This difference

can be quantified by taking into account the frequency of occurrence of the phrases in prior

months. As this simple example suggests, we find that sentiment is important, but it becomes

more informative when interacted with our measure of unusualness.

Research in finance and economics has commonly measured sentiment through what is known

in the natural language processing literature as a bag-of-words approach: an article is classified as

having positive or negative sentiment based on the frequency of positive or negative connotation

words that it contains. The papers cited above are examples of this approach. As the example

above indicates, this approach misses important information: the unusualness of the first phrase
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lies not in its use of “collapse” or “Lehman” but in their juxtaposition. We therefore measure

unusualness of consecutive word phrases rather than individual words.

Our analysis uses all news articles in the Thomson Reuters Corp. database between January

1996 and December 2014 that mention any of the top 50 global banks, insurance, and real estate

firms by market capitalization as of February 2015. After some cleaning of the data, this leaves

us with 367,331 articles, for an average of 1,611 per month. We calculate measures of sentiment

and unusualness from these news stories and study their ability to forecast realized or implied

volatility at the company-specific and aggregate levels.

The consistent picture that emerges from this analysis is that the interaction of unusualness

with negative sentiment yields the best predictor of future stock market volatility among the

news measures we study. Also, our analysis shows that news is not absorbed by the market

instantaneously.

We first run forecasting regressions of company-specific implied volatility on company-specific

news measures and evaluate results in the cross section. Our interacted measure of unusual

negative news, ENTSENT NEG, provides a statistically and economically significant predictor

of volatility at lags of up to six months. Negative sentiment and unusualness are also significant

separately, but much less so. Across companies, our interacted measure increases R2 by an

average of 0.22, relative to a baseline control model, more than any of the other news measures

we consider.

We then introduce controls for lagged values of implied and realized volatilities and negative

returns, all of which are known to be relevant predictors of volatility; see for example Bekaert and

Hoerova (2014). We include these controls in panel regressions of company-specific volatility

measures on company-specific news measures. Our interacted measures of sentiment (both

positive and negative) and unusualness remain economically and statistically significant, even

with the inclusion of the controls, with positive measures forecasting a decrease in volatility

and negative measures forecasting an increase. These results indicate that the information in

our news measures is not fully reflected in contemporaneous prices. In regressions of individual

companies, the incremental R2 from our news measures is much smaller once we control for

lagged volatility, but it remains largest for the interacted measure ENTSENT NEG.

For our aggregate analysis we extract aggregate measures of unusualness and sentiment from

our full set of news articles. We estimate vector autoregressions, taking as state variables the

VIX, realized volatility on the S&P 500, and several aggregate news measures. We examine
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interactions among the variables through impulse response functions. A shock to either nega-

tive sentiment or our interacted variable ENTSENT NEG produces a statistically significant

increase in both implied and realized volatility over several months. Once again, the effect is

strongest for our interacted measure of unusual negative news. The response of implied and

realized volatility to an impulse in ENTSENT NEG (or negative sentiment) is hump-shaped,

peaking at around four months. This pattern suggests that the information in these news

variables is absorbed slowly, a point we return to later.

As a final test of the informativeness of our news measures, we evaluate the performance of

long-short portfolios based on sorting stocks on sentiment and unusualness measures calculated

from company-specific news articles. We test two sorts on sentiment — one using just negative

sentiment and one using both positive and negative sentiment — and two sorts based on inter-

acting these sentiment variables with unusualness. We test several holding periods and fractions

of stocks included in the portfolios. With only 50 stocks to work with, our results are sensitive

to these parameters, but in most cases sorting on interacted variables produces higher excess

returns (relative to market, size, value, and momentum factors) and higher Sharpe ratios than

sorting on sentiment alone.

In most prior work that finds a predictive signal in the text of public documents, the infor-

mation is incorporated into prices within a few days.1 In contrast, we find that news measures

forecast volatility at lags as long as six months. These longer-horizon effects are intuitively plau-

sible in forecasting volatility rather than the direction of the market. Brewing concerns often

generate public discourse well before they materialize as market stress (if they do materialize).

For example, Google Trends data shows searches for “subprime” spiking in March 2007, more

than three months before the sharp rise in market volatility in July 2007. Concerns about a

Greek exit from the euro have been in the news for years, yet there is little doubt that the

event itself would drive up volatility, despite the anticipation. Arbitraging a predictable rise in

volatility is much more difficult than profiting from a predictable stock return: the term struc-

ture of implied volatility is typically upward sloping, the roll yield on VIX futures is typically

negative, and implied volatility is typically higher than realized volatility, so trades based on

options, futures or variance swaps need to overcome these hurdles. The uncertainty around

whether a potential stress will materialize (think of betting on Y2K fears) may further dampen

risk-adjusted returns from trading on forecasted volatility.

Rational inattention offers a possible explanation for the patterns we observe. Several studies

1An exception is Heston and Sinha (2014). By aggregating news weekly, they find evidence of predictability
over a three-month horizon.
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have found evidence that the limits of human attention affect market prices; see, for example,

the survey of Daniel, Hirshleifer, and Teoh (2004). Models of rational inattention, as developed

in Sims (2003, 2015), attach a cost or constraint on information processing capacity: investors

cannot (or prefer not to) spend all their time analyzing the price implications of all available

information. We interpret the cost or constraint on information processing broadly. It includes

the fact that people cannot read thousands of news articles per day (and having a computer

do the analysis involves some investment); but it also reflects limits on the contracts investors

can write to hedge market stress, given imperfect information on unobservable macro state

variables. Even among professionals, many investors may focus on a narrow set of stocks or

industries and may overlook information that becomes relevant only when aggregated over many

stocks. Indeed, Jung and Shiller (2005) review empirical evidence supporting what they call

Samuelson’s dictum, that the stock market is micro efficient but macro inefficient. The allocation

of attention between indiosyncratic and aggregate information drives the model of Maćkowiak

and Wiederholt (2009b). Investors also need to allocate attention across different time horizons.

Dellavigna and Pollet (2007) find that demographic information with long-term implications

is poorly reflected in market prices. A related effect may apply in our setting: investors may

anticipate the possibility of elevated volatility in the future yet not take actions that eliminate

this outcome.

Beyond this qualitative link to rational inattention we develop a precise connection. First,

we argue that although investors would like to hedge aggregate risk, information constraints

make it impossible to write contracts directly tied to unobservable macro state variables. We

interpret the VIX as an example of a resulting imperfect hedge. Next we evaluate the price of an

approximate hedge in a formulation consistent with rational inattention, meaning that investors

evaluate the conditional expectation of future cash flows based on imperfect information about

the past. Building on work of Sims (2003, 2015) and Maćkowiak and Wiederholt (2009b), we

show that when investors face binding information-processing constraints, the response of the

VIX to an impulse in the macro state variable is hump-shaped rather than monotonic, consistent

with what we find in our vector autoregressions. In other words, information constraints cause

news about macro shocks to be incorporated in the VIX only gradually.

Because the effects we find in the data play out over months, the signals we extract from news

articles are potentially useful for monitoring purposes. Along these lines, Baker, Bloom, and

Davis (2013) develop an index of economic policy uncertainty based (partially) on newspaper

articles. Indicators of systemic risk (see Bisias et al. 2012) are generally based on market prices

or lagged economic data; incorporating news analysis offers a potential direction for improved
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monitoring of stress to the financial system. From a methodological perspective, our work

applies two ideas from the field of natural language processing to text analysis in finance. As

already noted, we measure the “unusualness” of language, and we do this through a measure

of entropy in word counts. Also, we take consecutive strings of words (called n-grams) rather

than individual words as our basic unit of analysis. In particular, we calculate the unusualness

(entropy) of consecutive four-word sequences. These ideas are developed in greater detail in

Jurafsky and Martin (2009).

The rest of this paper is organized as follows. Section 2 introduces the methodology we

use, and Section 3 discusses the empirical implementation. Section 4 presents results based on

company-specific volatility, and Section 5 examines aggregative volatility. Section 6 looks at

return predictability using unusualness and sentiment. Section 7 develops the connection with

rational inattention. Section 8 concludes.

2 Methodology

2.1 Unusualness of language

A text is unusual if it has low probability, so measuring unusualness requires a model of the

probability of language. This problem has been studied in the natural language processing

literature on word prediction. Jurafsky and Martin (2009), a very thorough reference for the

techniques we employ in this paper, gives the following example: What word is likely to follow

the phrase please turn your homework ...? Possibly it could be in or over, but a word like the

is very unlikely. A reasonable language model should give a value for

P (in|please turn your homework)

that is relatively high, and a value for

P (the|please turn your homework)

that is close to zero. One way to estimate these probabilities is to count the number of times

that in or the have followed the phrase please turn your homework in a large body of relevant

text.
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To use an example from our dataset, up until October 2011, which is around the start of the

European sovereign debt crisis, the phrase negative outlook on had appeared 688 times, and had

always been followed by the word any. In October 2011, we observe in our sample 13 occurrences

of the phrase negative outlook on France. We would like our language model to consider this

phrase unusual given the observed history.

An n-gram is a sequence of n words or, more precisely, n tokens.2 Models that compute these

types of probabilities are called n-gram models (in this example, n = 5) because they give the

probability of seeing the fifth word conditional on the first four for a given 5-gram.

Consider the N -word text w1 . . . wN . We can write its probability as

P (w1 . . . wN) = P (w1)P (w2|w1)P (w3|w1w2) · · ·P (wN |w1w2 . . . wN−1). (1)

N-gram models are used in this context to approximate conditional probabilities of the form

P (wk|w1 . . . wk−1) when k is so large (practically speaking, for k ≥ 6) that it becomes difficult

to provide a meaningful estimate of the conditional probabilities for most words. In the case of

an n-gram model, we would approximate the above with

P (wk|w1 . . . wk−1) ≈ P (wk|wk−(n−1) . . . wk−1),

which allows us to approximate the probability in (1) as

P (w1 . . . wN) =
N∏

k=n

P (wk|wk−n+1 . . . wk−1). (2)

In (2), we have dropped the probability P (w1 . . . wn−1) of the first n − 1 words, which should

have little effect if n ≈ 4 and N is in the thousands.

Let us refer to the text whose probability (or unusualness) we are trying to determine as

the evaluation text. Since the true text model is not known, the probabilities in (2) will usually
˜have to be estimated from a training corpus, w̃1 . . . w̃Ñ , where typically N � N . The idea is to

use a large collection of text to estimate the probability that a given word will follow a certain

phrase, and then to use these conditional probabilities to determine a probability score for text

that we encounter later on.

2For example, we treat “chief executive officer” as a single token. When we refer to “words” in the following
discussion, we always mean tokens.
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Consider an evaluation text w1 . . . wN and conditional probabilities P (wk|wk−n+1 . . . wk−1)

estimated from a training corpus w̃1 . . . w̃Ñ .3 Assuming there are I distinct n-grams in w1 . . . wN ,

we can reorganize (2) as

P (w1 . . . wN) =
I∏

i=1

P (ωi
n|ωi

1 · · ·ωi
n−1)

ci , (3)

where {ωi
1 . . . ωi

n} is the ith n-gram, and ci is the number of times this n-gram appears in the

evaluation text w1 . . . wN (so that c1 + · · ·+ cI = N − n + 1).

The probabilities P (ωi i
n|ω1 · · ·ωi

n−1) in (3) are estimated from the training corpus. For a 4-

gram {ω1 ω2 ω3 ω i
4}, the empirical probability of ω4 conditional on ω1 ω2 ω3 will be denoted by

mi, and is given by

mi =
c({ω1 ω2 ω3 ω4})
c({ω1 ω2 ω3})

(4)

where c(·) is the count of the given 3- or 4-gram in the training corpus.

Taking logs in (3) and dividing by the total number of n-grams in the evaluation text,

w1 . . . wN , we obtain the per word, negative log probability of this text:

H(w1 . . . wN) ≡ − 1

N − n + 1
log P (w1 . . . wN) = − 1

N − n + 1
i=1

ci log mi

= −
I∑

i=1

pi log mi,

I∑
(5)

where pi is the frequency of occurrence of n-gram i in the evaluation text w1 . . . wN .

The evaluation text w1 . . . wN is unusual if it has low probability P (w1, . . . , wN), relative to

the training corpus. Equation (5) shows that, in an n-gram model, the evaluation text is unusual

if there are n-grams i that occur frequently in the evaluation text (as measured by pi) but rarely

in the training corpus (as measured by mi).

The quantity in (5) is called the cross-entropy of the model probabilities mi with respect

to the observed probabilities pi (see Jurafsky and Martin (2009) equation (4.62)). We refer to

H(w1 . . . wN) simply as the entropy of the evaluation text. Based on this definition, unusual

3We will address in Section 3.3 how to handle the situation that the n-gram {wk−n+1 . . . wk} was not observed
in the training corpus.
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texts will have high entropy.4

Lists of n-grams

The definition of entropy in (5) applies to an arbitrary list of n-grams, as opposed to just a text

w1 . . . wN , as long as we know the count ci for each n-gram i. For example, we may want to

consider the list of n-grams that include the word “France,” or the list of all n-grams appearing

in articles about banks. For a list j of n-grams, we denote by {cj(t), . . . , cj
1 I(t)} the counts of the

number of times each n-gram appears in month t. For an n-gram i that does not appear in list

j in month t, cj
i (t) = 0.

Given these counts, for each n-gram i we can calculate

pj
i (t) =

cj
i (t)∑
i c

j
i (t)

,

which is i’s fraction of the total count of n-grams in list j. Given a list of n-grams in month t,

the entropy of that list will be defined as

Hj(t) ≡ −
∑

i

pj
i (t) log mi(t), (6)

which is a generalization of (5). As in (4), the mi are conditional probabilities estimated from

a training corpus. We write mi(t) to emphasize that these are estimated from news articles

published prior to month t. As explained in Section 3.3, we use a rolling window to calculate

mi(t).

2.2 Sentiment

The traditional approach for evaluating sentiment has been to calculate the fraction of words

in a given document that have negative or positive connotations.5 To do so, researchers rely

4Tetlock (2011) uses measures of similarity between news articles as proxies for staleness of news, and the same
tools could potentially be used to measure dissimilarity as a proxy for unusualness. Tetlock’s (2011) approach
seems better suited to comparing pairs of articles than to comparing large bodies of text.

5Loughran and McDonald (2011) use a more sophisticated approach that assigns higher weights to negative
or positive sentiment words that occur less frequently in a training corpus. Jegadeesh and Wu (2013) empirically
assess the importance of words by regressing contemporaneous returns of companies releasing 10K’s on the
frequency of occurrence of words in those filings.

9



on dictionaries that classify words into different sentiment categories. Tetlock (2007) and Tet-

lock, Saar-Tsechansky, and Macskassy (2008) use the Harvard IV-4 psychosocial dictionary.

Recent evidence (Loughran and McDonald (2011) and Heston and Sinha (2014)) shows that

the Laughran-McDonald6 word lists do a better job of sentiment categorization in a financial

context than the Harvard dictionary. We use the Laughran-McDonald dictionary in our work.

Because our core unit of analysis is the n-gram, we take a slightly different approach than

the traditional literature. Rather than counting the number of positive or negative words in a

given article, we classify n-grams as being either positive or negative. An n-gram is classified as

positive (negative) if it contains at least one positive (negative) word and no negative (positive)

words. We can then measure the tone of (subsets of) news stories by looking at the fraction of

n-grams they contain which are classified as either positive or negative.

3 Empirical implementation

Our dataset consists of Thomson Reuters news articles about the top 50 global banks, insurance,

and real estate firms by U.S. dollar market capitalization as of February 2015.7 Almost 90 percent

of the articles are from Reuters itself, with the remainder coming from one of 16 other news

services. Table 1 lists the companies in our sample. Table 2 groups our sample of companies

and articles by country of domicile. The table reports the following statistics about companies

domiciled in a given country: (1) average market capitalization, (2) the percent of all articles

that mention companies from that country, and (3) the number of companies. Our set of news

articles leans heavily towards the English speaking countries (US, UK, Australia, Canada). For

example, even though China has 8 (of a total of 50) companies with market capitalizations

on par with the U.S. companies, under 3 percent of our total articles mention companies from

China.

The raw dataset has over 600,000 news articles, from January 1996 to December 2014. Many

articles represent multiple rewrites of the same initial story. We filter these by keeping only the

first article in a given chain.8 We also drop any article coming from PR Newswire, as these

are corporate press releases. All articles whose headlines start with REG- (regulatory filings)

or TABLE- (data tables) are also excluded. This yields 367,331 unique news stories which we

6See http://www3.nd.edu/~mcdonald/Word_Lists.html.
7The survivorship bias in this selection of companies works against the effects we find — firms that disappeared

during the financial crisis are not in our sample.
8All articles in a chain share the same Reuters ID code.
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ultimately use in our analysis. Each article is tagged by Thomson Reuters with the names of the

companies mentioned in that article. Many articles mention more than one company. Section

A.1 gives more details about our data processing.

Figure 1 shows the time series of article counts in our sample. The per month article count

reaches its approximate steady-state level of 1,500 or so articles in the early 2000’s, peaks around

the time of the financial crisis, and settles back down to the steady state level towards the end

of 2014. The early years of our sample have relatively fewer articles, which may introduce some

noise into our analysis.

Our market data comes from Bloomberg L.P. For each of the 50 companies in our sample

we construct a U.S. dollar total returns series using Bloomberg price change and dividend yield

data. Also, for those firms that have traded options, we use 30-day implied volatilities for at-the-

money options from the Bloomberg volatility surfaces. Our macro data series are the Chicago

Board Options Exchange Volatility Index (VIX) and 30-day realized volatility for the S&P 500

Index computed from daily returns.9

Throughout the paper, our empirical work is at a monthly horizon, both for our news mea-

sures and our market and volatility data.

3.1 N-grams

In our empirical work, we use a 4-gram model.10

Each article goes through a data-cleaning process to yield more meaningful n-grams. For

example, all company names (and known variations) are replaced with the string company .

Phrases such as Goldman Sachs reported quarterly results and Morgan Stanley reported quarterly

results are replaced with company reported quarterly results thus reducing two distinct 4-grams

into a single one that captures the semantic intent of the originals. In this way we reduce the

number of n-grams in our sample, which will allow us to better estimate conditional probabilities

in our training corpus. In another example, we replace chief executive officer with ceo because

we would like the entity referred to as ceo to appear in n-grams as a single token, rather than a

three word phrase. Appendix A.1 gives more details about our cleaning procedure.

9Month t realized returns are returns realized in that month, whereas the month t VIX level is the close-of-
month level.

10Jurafsky and Martin (2009, p. 112) discuss why 4-gram models are a good choice for most training corpora.
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We collect all 4-grams that appear in cleaned articles.11 An n-gram must appear entirely

within a sentence. Contiguous words that cross sentences do not count as an n-gram.12 For

month t we consider various lists of n-grams, such as the list of all n-grams appearing in time t

articles, or the list of n-grams that appear in time t articles that mention a specific company.

For example, in January of 2013, the 4-gram raises target price to appeared 491 times in

the entire sample (i.e. cAll
{raises target price to}(January 2013) = 491 where All is the list of n-grams

appearing in all articles). It appeared 34 times in articles that were tagged as mentioning Wells

Fargo & Co. 26 times in articles that mentioned JPMorgan Chase & Co., but 0 times in articles

that mentioned Bank of America Corp. If we sum across all 50 names in our dataset, this 4-gram

appeared 1,014 times (more than its total of 491 because many articles mention more than one

company).

In each month, we focus on the 5000 most frequently occurring 4-grams. In our 19 year

dataset, we thus analyze 19 × 12 × 5000 = 1.14mm 4-grams. Of these 4-grams, 394,778 are

distinct. The first three tokens in the latter represent 302,973 distinct 3-grams.

3.2 Sentiment

We define sentiment of a given subset of articles as the percentage of the total count of all n-

grams appearing in those articles that are classified as either positive or negative. For example,

we may be interested in those articles mentioning Bank of America, or JPMorgan, or the set of

all articles at time t. If we denote by POS(t) (NEG(t)) the set of all time t n-grams that are

classified as positive (negative), then the positive sentiment of list j is

SENTPOSj(t) =

∑
i∈POS(t) cj

i (t)∑
i c

j
i (t)

, (7)

with the analogous definition for SENTNEGj(t).

For the list of n-grams from all time t articles, we will simply omit the superscript. For all

n-grams coming from articles that mention, say, JPMorgan we would write SENTPOSJPM(t).

Figure 2 shows the time series of SENTPOS and SENTNEG in our sample, as well as a

scaled version of the VIX. Note that at the aggregate level, negative sentiment appears to be

11We use the Natural Language Toolkit package in Python for all text processing applications in the paper
(see Section A.1).

12Note that this imposes slightly more structure than what is assumed about w1 . . . wN in (1).
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contemporaneously positively correlated with the VIX, whereas positive sentiment is contem-

poraneously negatively correlated. The correlations are 0.458 and -0.373 respectively. Section 5

will study the dynamics of this relationship in depth.

Table 3 shows the average contemporaneous correlation between the 50 individual implied

volatility and sentiment pairs (i.e. between single name implied volatility and the SENTNEGj

and SENTNEGj series for a given company j), and between the aggregate sentiment series

and the VIX. If an individual implied volatility series does not exist, we use the VIX instead.

Cross-sectional standard errors are also calculated assuming independence of observations. Av-

eraging across single names reveals that SENTNEGj (SENTPOSj) is on average positively

(negatively) correlated with single name implied volatility, which is consistent with what we

observe at the aggregate level.

We thus have fairly strong evidence that our sentiment measures, at the aggregate and single

name levels, are responding to the same factors that drive the VIX.

3.3 Entropy

Our entropy measures come from equation (6). We refer to the measure of unusualness of all

time t articles as ENTALL(t). The unsualness of only those articles which mention a specific

company is ENTALLj(t), where j is the list of n-grams coming from articles that mention the

company in question.

We can also measure the unusualness of subsets of n-grams that do not correspond to all

n-grams that come from some set of articles. For example, we can look at the list of n-grams

which are classified as having negative (positive) sentiment; we refer to this entropy measure

as ENTNEG(t) (ENTPOS(t)). Or we can look at the list of n-grams that have negative

(positive) sentiment that come from the subset of articles in month t that mention company j;

we refer to these measures as ENTNEGj(t) (ENTPOSj(t)).

N-grams from month t articles form the evaluation text (giving us the pj
i ’s), and n-grams from

rolling windows over past articles form the training corpus (giving us the mi’s). The training

corpus for month t consists of all 3- and 4-grams in our dataset that appeared in the two year

period from month t−27 up to and including month t−4. We use a rolling window, as opposed

to an expanding window from the start of the sample to t− 4 in order to keep the information

sets for all our entropy calculations of roughly the same size.
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It is possible that a given 4-gram that we observe in month t never occurred in our sample

prior to month t. In this case mi(t) is either zero (so its log is infinite) or undefined if its

associated 3-gram also has never appeared in the training sample. To address this problem, we

modify our definition of mi(t)
13 in (4) to be

mi(t) ≡
c({ω1ω2ω3ω4}) + 1

c({ω1ω2ω3}) + 4
. (8)

This means that a 4-gram/3-gram pair that has never appeared in our sample prior to t will

be given a probability of 0.25. Our intent is to make a never-seen-before n-gram have a fairly,

but not extremely, low conditional probability. The value 0.25 is somewhere between the 25th

percentile and the median mi(t) among all our training sets. For frequently occurring 4-grams,

this modification leaves the value of mi roughly unchanged. Jurafsky and Martin (2009) discuss

many alternative smoothing algorithms for addressing this sparse data problem, but because of

the relatively small size of our training corpus, many of these are infeasible.

We exclude the three months prior to month t from the training corpus because sometimes a

4-gram and its associated 3-gram, in the two year’s prior to month t, may have occurred for the

first time in month t− 1. Furthermore if the associated 3-gram occurred as often in month t− 1

as the 4-gram, the training set (unmodified) probability P (w4|w1 w2 w3) will equal one, and the

associated entropy contribution will be zero. However, this n-gram may still be “unusual” in

month t if it has only been observed in month t−1 and at no other time in our training set. For

example the 4-gram a failed hedging strategy is one of the top entropy contributors (see discusion

in Section 3.3.1) in May 2012. It refers to the losses incurred in April and May of 2012 by the

Chief Investment Office of JPMorgan. The 3-gram a failed hedging occurs for the first time in

our sample in May 2012 as well, and both occur 53 times. Therefore, if May 2012 is included

in the training corpus for June 2012, the conditional probability for this 4-gram will be one.14

However, when this phrase appears (11 times) in June 2012, we would still like to regard it as

unusual.

Our results are not very sensitive to any of these modeling assumptions (i.e. setting unob-

13We approximate c({ω1ω2ω3ω4}) in a given training window by only counting the occurrences of those 4-
grams which are among the most frequently occurring 5000 in every month. We therefore underestimate 4-gram
counts, especially for less-frequently occurring n-grams, and therefore the mi’s associated with low pν

i ’s are biased
downwards. However, because p log p goes to zero for small p, this is unlikely to have a meaningful impact on
our entropy measure. Across the 228 months in our sample, the maximum least-frequently-observed n-gram
empirical probability is 0.012 percent. Rerunning the analysis using the top 4000 n-grams – instead of the top
5000 – in each month leaves our results largely unchanged, suggesting the analysis isn’t sensitive to this issue.

14Using the modified mi(t) from (8) the probability would be 54/57.
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served mi’s to 0.25, having the rolling window be two years, and the choice of three months for

the training window offset).

3.3.1 Contribution to entropy

By sorting n-grams on their contribution to entropy in (6), we can identify for a given month the

most and least unusual 4-word phrases. Table 4 shows the three top and bottom phrases15 by

their contribution to entropy in two months in our sample that had major market or geopolitical

events: September 2008 (the Lehman bankruptcy) and May 2012 (around the peak of the

European sovereign debt crisis). In each case, at least one of the n-grams with the largest

entropy contribution reflects the key event of that month – and does so without any semantic

context. On the other hand, the n-grams with the smallest entropy contribution are generic,

and have no bearing on the event under consideration.

Consider for example the n-gram nyse order imbalance mn from September of 2008. In our

training set, the majority of occurrences of the 3-gram nyse order imbalance were followed by

n (a number) rather than mn (a number in the millions). The frequent occurrence of nyse

order imbalance followed by a number in the millions, rather than a smaller number, is unusual.

This 4-gram has a relatively large pi, a low mi (and a high − log mi), and is the top contributor

to negative entropy in this month. On the other hand, the 3-gram order imbalance n is almost

always followed by the word shares, thus giving this 4-gram an mi of almost 1, and an entropy

contribution close to zero. In May 2012, the n-gram the euro zone crisis is unusual because in

the sample prior to this month the 3-gram the euro zone is frequently followed by ’s or debt, but

very infrequently by crisis. Therefore the relatively frequent occurrence in this month of this

otherwise unusual phrase renders it a high negative entropy contributor.

While anecdotal, this evidence suggests that our entropy measure is able to sort phrases in

a meaningful, and potentially important, way.

Aggregate entropy

We find that the aggregate entropy measures can be unduly influenced by a single frequently

occurring n-gram. For example, if an n-gram i appears only in articles about one company

in month t, but appears very often (i.e. has a large pi(t)) and has a low model probability

15Some of the distinct 4-grams come from the same 5-gram.
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mi(t), this one n-gram can distort the aggregate level entropy measure. A more stable measure

of aggregate entropy is the first principal component of the single-name entropy series. For

example, ENTPOS can be measured as the first principal component of all the single-name

ENTPOSj series. In the rest of the paper, all aggregate level entropy measures (ENTALL(t),

ENTNEG(t), and ENTPOS(t)) are computed in this way.16

Figure 3 shows the three aggregate entropy series, with a scaled VIX superimposed. All three

series are positively correlated with the VIX. ENTPOS has the lowest correlation at 0.15, and

ENTNEG has the highest at 0.48. This is in contrast to the sentiment series where negative

and positive sentiment have opposite signed VIX correlations. Since entropy reflects unusualness

of news, it is perhaps not surprising that all entropy series are positively correlated with the

VIX, as all news (neutral, positive, and negative) may be more unusual during times of high

market volatility.

Table 3 shows the average single name (and non-principal component aggregate) entropy

to VIX correlations. The average single names correlations for ENTALL and ENTNEG are

positive, and the ENTPOS average correlation is marginally negative though very close to

zero. The values are smaller in magnitude than the correposnding sentiment ones. As espected,

SENTNEG (SENTPOS) is positively (negatively) correlated with contemporaneous implied

volatility; both correlations are significantly different from zero.

The entropy series seem to reflect some of the same factors as the sentiment and VIX series,

but also appear to have qualitatively different behavior. This gives hope that entropy contains

information complementary to sentiment, which is the topic to which we now turn.

4 Single name volatility

At the single-name level, we explore the relationship between our news-based measures and

future volatility in two steps. Section 4.1 shows that: our news-based measures contain relevant

information about future volatility; that entropy and sentiment both matter; and that sentiment

interacted with entropy contains more information than either measure on its own. Section

4.2 shows that our news-based measures remain useful forecasting tools even after we control

16Because of the need to have all data present for computing the principal component, our aggregate entropy
measures use only 25 names for ENTPOS and ENTNEG, and 31 names for ENT . For names that have
observations at the start of sample period, but are missing some intermediate observations, we use the most
recently available non-missing value of the associated entropy measure. See Footnote 20 for more details.
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for known predictors of future volatility. Therefore, at the single-name level, the information

contained in news-based measures is not already fully incorporated into prices.

4.1 Are news-based measures informative about future volatility?

We first want to establish that our entropy-based algorithm for extracting information from

news stories does, in fact, contain useful information for future single-name volatility. We do

not yet ask whether this information is already known to the market. We address this question

in the next section.

To explore the extent to which our news-based measures contain information about future

volatility, we regress single name implied volatility (30-day at-the-money) on lagged values of

our news measures. The basic regression for name j has the form

IV OLj
1mo(t + φ) = aj + bj ′Ls NEWSj(t) + · · ·+ εj(t) (9)

where NEWSj is the news-based indicators under consideration, Ls is an s-lag operator, 17and

φ is an integer (set to zero for most of our results) which allows us to forecast volatility more

than one month into the future. In our analysis s is set to either 3 or 6 months. The · · · in (9)

indicates the possibility that additional right hand side variables will be present in the regression.

We normalize all NEWS variables to have unit standard deviation to make interpretation of

coefficients easier. The j superscript usually indicates that the measure is computed from the

list of n-grams coming from articles that mention company j.18 We then average the time series

regression coefficients across all names (for which we have implied volatility data) to obtain

bl =
j bj

l∑
j 1

.

∑
(10)

We compute standard errors for each coefficient bl in (10) under the assumption of independence.

To establish a baseline result for (9), we run the regression with NEWSj set to the percent

of all month t articles that mention company j, which we call ARTICLE PERCTOT j.19 We

use this measure because of our prior belief that it should contain minimal – though potentially

17LsY t {Y t− , Y t− , . . . , Y t− s }
18Only the article count measure doesn’t look at n-grams (see ARTICLE PERCTOT j below).
19All results are qualitatively similar if we use the percent of all time t n-gram counts that come from articles

that mention name j.

( ) = ( 1) ( 2) ( ) .
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non-zero – information for future volatility. We refer to this as the control regression. Figure 5

plots the b coefficients, and associated confidence intervals. Indeed, all coefficients from (9) are

not significantly different from zero.

The right chart in Figure (5) shows a plot of the fraction of all unadjusted R2’s of the single

name regressions, using ARTICLE PERCTOT on the right hand side, that are greater than

a given value x, i.e. f(x) = Pr(R2 > x). Note that the x-axis in the chart starts at 1 and goes

to 0. This function is one minus the cumulative distribution function of the R2’s from the single

name regressions.

For an idealized zero-information regressor, this graph should be zero at all values of R2 that

are larger than 0, with a spike to probability one at R2 = 0. The area under this curve would be

zero. However, some single names have non-zero R2’s with respect to ARTICLE PERCTOT j

and we have to control for this fact in interpreting the informativeness of our other regressors.

Similarly, for the ideal regressor with perfect explanatory power for every single name in our

cross-section, the R2 curve would spike up to 1 at R2 = 1, and remain at 1 for all other potential

R2 values. The area under this curve would be 1. It is easy to show that the area under the

f(x) curve (AUC) is equal to the cross-sectional mean of R2’s from the single name regressions.

We will use the empirical f(x) for ARTICLE PERCTOT j as the baseline R2 curve (i.e.

the one that obtains for a regressor with minimal predictive value). Comparing the AUC of the

R2 curves of other news-based variables to this one will tell us the incremental improvement in

the cross-sectional average of R2’s that is achieved by a given regressor relative to a regressor

with little predictive value. Furthermore, examining the shape of a given news-based R2 curve

relative to the baseline yields a richer picture of the predictive power of the measure in question

than simply looking at the difference in cross-sectional means of R2’s.

Ranking news-based measures by their information content

The left two columns of Table 7 shows the difference in AUC’s between our news-based measures

and ARTICLE PERCTOT , or, equivalently, the difference in cross-sectional means of R2’s.

We include the two sentiment indicators, the three entropy indicators, a variable that interacts

negative sentiment with negative entropy (ENTSENT NEG), and another which interacts

positive entropy with positive sentiment (ENSENT POS).20 Results are shown for lags of 6

20In each single name regression, we exclude those months when one of the regressors is not available. For
example, in a month where a given name had no n-grams classified as negative, while the negative sentiment
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measure is zero, the negative entropy measure from (6) is not defined. Replacing all such unobservable entropy
scores with zero slightly reduces the magnitude of our results, but does not change any of the qualitative
conclusions.

and 3 months in (9).

Consistent with some of the prior findings in the literature (for example, Tetlock (2007))

we find that negative sentiment contains information for future market outcomes – though

Tetlock looks at stock returns and here we analyze implied volatility – offering an incremental

improvement in average R2’s relative to the no-predictability benchmark of roughly 14 percent.

Negative entropy yields an R2 improvement of 9 percent. Positive sentiment and entropy do not

contain incremental information.

Interestingly, the interacted variable, ENTSENT NEG, improves average R2’s by 22 per-

cent, which is about double the improvement of either of the negative news measures separately.

Figure 6 shows the results of this regression. The difference in the R2 curve relative to the

no-predictability benchmark is dramatic. All 6 lagged coefficient are statistically significant.

The coefficient estimates are economically very large. A one unit standard deviation increase in

last month’s ENTSENT NEG will increase this month’s one month implied volatitility by 4

volatility points on average. Though, it should be emphasized, this information may already be

incorporated in prices.

As a robustness check, we run the regression in (9) with SENTNEG, ENTNEG, and

ENTSENT NEG as the regressors. The control regression uses ARTICLE PERCTOT ,

NGRAM PERCTOT and ARTICLE PERCTOT × NGRAM PERCTOT . As Figure 7

shows, when all three variables are included, negative sentiment and entropy are statistically and

economically marginal, while the interacted term ENTSENT NEG remains both statistically

significant and economically large.

Past work has used sentiment as the measure of the information content of news (see Tetlock

(2007), Tetlock et al. (2008), Garcia (2013), Jegadeesh and Wu (2014), among others). Our

results show that sentiment interacted with unusualness contains significantly more information

about future implied volatility, at the single name level, than either sentiment or entropy on its

own. As will become apparent, this finding holds in most of the other results in this paper.
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4.2 Is this information already in the price?

An important question is whether the information present in our news-based measures is already

known to the market. Given that our sample contains 50 of the largest – and therefore most

closely followed by investors – financial firms in the world, and that our analysis is at a monthly

time horizon, the bar for finding information in our news-based measures that is new to market

participants is quite high.

Bekaert and Hoerova (2014) show that, at the index level, lags of implied variance, realized

variance, and stock price jumps all matter for forecasting future realized variance. To control for

these effects, we use our 30-day at-the-money implied volatility measure IV OL, 20 trading-day

realized volatility RV OL, and the negative and positive portions of monthly returns r+ and

r− as explanatory variables for future realized and implied volatility.21 Our basic specification

for evaluating the forecasting power of a news-based measure NEWSj is the following panel

regression:

V OLj(t) = aj + c′1LsRV OLj
30day(t) + c′2LsIV OLj

1mo(t) + c′3Lsr
−j(t)

+ b1′LsARTICLE PERCTOT j(t) + b2′LsNEWSj(t) + εj(t), (11)

where V OL is either either IV OL or RV OL, and aj is an individual fixed effect term. The

variable ARTICLE PERCTOT j is intended to control for the information content of news

volume. As in the single name regressions, all news measures are normalized to have unit

variance.

We show results for s = 2 (the ones for s = 3 are qualitatively similar and aren’t shown to

conserve space). We run this specification in variance, log variance and volatility terms. All of

these yield similar qualitative results. We show the volatility results in the paper because these

are the easiest to interpret. Also, adding r+ as an explanatory variable was not impactful in

any of our specifications, so we do not include this variable in our regression results.

Before turning to the forecasting regression in (11), we examine briefly the drivers of our

news-based measures. The following is our descriptive panel specification:

NEWSj(t) = aj +c′1L2RV OLj
30day(t)+c′2L2IV OLj

1mo(t)+c′3L2r
−j(t)+b′L2NEWSj(t)+εj(t).

(12)

21r− ≡ max(−r, 0) and r+ ≡ max(r, 0).
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This is run for each of the following categories of news measures:

• positive: SENTPOS, ENTPOS, ENTSENT POS;

• negative: SENTNEG, ENTNEG, ENTSENT NEG.

Table 8 shows the results of this descriptive regression. While lagged volatility has little effect

on the positive sentiment news measures, high past realized volatility forecasts higher negative

sentiment news measures in the future. Absence of past negative returns forecasts higher future

positive news measures, whereas the presence of negative returns forecasts higher future negative

news measures. The positive and negative news measures are less persistent than percent article

counts – thus news sentiment about a firm quickly reverts back to its average levels, whereas a

firm may stay “in the news” for relatively longer.

Tables 9 and 10 show the results of the specification in (11) for implied and realized volatility

respectively. The control variables (lagged IV OL, RV OL, and r−) all matter for both future

realized and implied volatility, and enter the panel with the expected positive sign (only r−(t−2)

enters with a negative sign, and that just partly offsets the large positive loading on r−(t− 1)).

The positive category news measures (Models 1–3) all show up with negative coefficients,

suggesting positive news at time t−1 or t−2 forecast lower time t implied and realized volatility,

after controlling for known forecasting variables. Adding the lag 1 and lag 2 coefficients on

NEWSj, reported in the row labeled “Sum Last Two”, allows us to evaluate the importance

of the difference news measures. We find that ENTSENT POS has a larger effect on future

volatility than either positive sentiment or entropy on their own. Furthermore the economic

significance of the effect is large. For example, as Table 9 shows, these two coefficients are -1.04

for ENTSENT POS, suggesting that a one standard deviation increase in current positive and

unusual news forecasts a 1 volatility point drop (e.g. from 20 to 19) next month. The results

for future realized volatility in Table 10 are similar.

The negative category news measures (Models 4–6) forecast future implied and realized

volatility with a positive sign. All three news-based measures (SENTNEG, ENTNEG,

ENTSENT NEG) are economically and statistically meaningful, with the interacted term

ENTSENT NEG having the largest economic effect. A one standard deviation increase in the

latter implies a 1.546 (2.428) rise in next month’s implied (realized) volatility.

Model (7) which has article percent count as the sole news-based measure offers some evidence

that firms that are in the news a lot, irrespective of sentiment, tend to have lower implied and
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realized volatilities in future months.

Our panel results suggest that, even after controlling for known determinants of future volatil-

ity, our news-based measures still contain useful forecasting information. The coefficient esti-

mates on lagged news-measures were shown to be statistically and economically meaningful.

Furthermore, for both the positive and negative sentiment categories, the interacted news terms

(ENTSENT POS and ENTSENT NEG) contain more information than either sentiment or

entropy on their own. This is a recurrent theme in this paper’s results.

A robustness check using R2’s

The third and fourth columns of Table 7 show the results of the single-name regressions in (9)

when lags of implied volatility are included as explanatory variables. The analysis is identical to

the information rankings of the news-based measures that were discussued in Section 4.1, except

we now add lags of implied volatility to both the control and evaluation regressions. Adding

lagged implied volatility increases the average R2 of the control regressions from 0.105 (0.0796)

with 6 (3) lags to 0.69 (0.549). Thus, lagged implied volatility contains a great deal of information

for future implied volatility. The incremental contribution of our news-based measures to the

difference of average R2’s between the control and evaluation regressions drops meaningfully

from the specification which did not include lagged implied volatility. While different news-

based measures add some incremental explanatory power as measured by average R2 (especially

in the φ = 1 specification), the size of the effect is economically small.

These results suggest that much of the explanatory power we found in Section 4.1 was due to

the contemporaneous correlation of our news-based measures with implied volatility. However,

the results from the panel specification in (11) show that our news-based measures contain

significant and economically meaningful content for future volatility after controlling for known

forecasting variables. The discrepancy between these two sets of results suggests that either the

panel regression has more power to reject the null of no incremental information in the news-

based measures, or that while significant, the economic impact of the news-based measures for

forecasting future volatility is small for the set of names we consider. A deeper examination of

this discrepancy using a dataset with more and smaller firms is an interesting area for future

work.
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5 Aggregate volatility

We now turn from company-specific measures of entropy, sentiment, and volatility to aggregate

measures. We document evidence that unusual negative news predicts an increase in volatility

as measured either by the VIX or by realized volatility on the S&P 500 index. As discussed in

Section 3, each aggregate measure of entropy is the first principal component of the corresponding

measures across the financial companies listed in Table 1, whereas aggregate sentiment follows

from (7) applied to the set of all n-grams in month t.

We consider the five aggregate news-based measures from Figures 2 and 3, as well as the in-

teraction variable ENTSENT NEG(t) = ENTNEG(t)×SENTNEG(t). Table 5 gives some

descriptive statistics about these measures, and Table 6 shows the contemporaneous correlations

among these six variables, and the VIX index. Figure 4 shows a plot of ENTSENT NEG ver-

sus the VIX index.

SENTPOS has a negative correlation with the VIX, whereas all the entropy measures

have a positive correlation, suggesting that at the aggregate level, news unusualness increases

with market volatility. All entropy measures are positively correlated with one another, and

negatively correlated with SENTPOS.

It is notable that although ENTNEG and SENTNEG have a low correlation of 0.19,

their correlations with the VIX are 0.48 and 0.46 respectively. So even though the two do not

share much in common, it appears they both explain a meaningful portion of VIX variability.

The interaction variable ENTSENT NEG has the highest VIX correlation of the news based

measures at 0.6. It also has a high correlation with its consituents: 0.86 with SENTNEG and

0.64 with ENTNEG.

This correlation result, the visual evidence in Figure 4 and the desriptive statistics in Table

5 all suggest that the interacted variable ENTSENT NEG is a closer fit to the VIX (and

realized volatility) than either negative sentiment or entropy separately.

In the next two sections, we explore the dynamics of this relationship in greater detail.

5.1 Event studies

For a first look at the data, we examine changes in the VIX around high and low values of our

aggregate measures. For each aggregate measure (such as ENTNEG or SENTNEG), we sort
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the 177 months from April 1999 through December 2013 according to the value of the measure

and select the months in the top and bottom and quintiles. We think of the months in these

quintiles as event dates. For each such month, we record the level of the VIX over the 25-month

period starting 12 months before the event and ending 12 months after. We then average the

VIX paths across the months in each quintile to see the average behavior of the VIX around

one of these events.

As a point of reference, Figure 8 shows the results when the events are high and low values of

the VIX itself. The dashed lines are two standard errors above and below the solid average line.

As expected, the left panel shows that the VIX increases to a peak and then declines; the right

panel confirms that the VIX decreases and then increases around a low value, but the pattern is

much less pronounced around a low point than around a high point. In part for this reason, we

focus primarily on the quintile associated with high volatility when we sort on other variables.

Figure 9 shows corresponding event studies for various measures, starting with ENTNEG

in the first row. Around a high level of ENTNEG, we see the VIX first climbing and then

staying elevated, in contrast to the sharp mean-reversion we see in Figure 8. Around a low level

of ENTNEG, the drop and rebound in the VIX is more pronounced than it is around a low

level of the VIX itself in Figure 8. High levels of SENTNEG have a similar association with

the VIX, but low levels of SENTNEG are associated with a steady decline in the VIX, unlike

the pattern around low levels of ENTNEG. Around a high level of the interaction variable

ENTSENT NEG we again see a climb in the VIX but almost no subsequent decline — a high

level of the ENTSENT NEG variable signals a sustained elevation in volatility.22 We interpret

this as further evidence that unusual negative news forecasts market stress. Indeed, the effect is

large, with a high level of ENTSENT NEG associated with VIX increase of almost 10 points.

The effect lasts for months, consistent with the findings in the company-specific regressions of

Section 4. As a final point of comparison, the lower-right panel of Figure 8 shows that high

levels of overall entropy have no association with changes in the VIX.

We obtain qualitatively similar results using realized volatility (measured as the standard

deviation of daily returns within a month) instead of the VIX. For example, the left panel of Fig-

ure 10 shows the evolution of realized volatility around top quintile levels of ENTSENT NEG:

as with the VIX, realized volatility climbs to month zero and remains elevated, declining

only slowly after the peak. The right panel of Figure 10 shows the behavior of the volatil-

ity risk premium, measured as the difference between the VIX and realized volatility. The

22This behavior for the interacted variable does not automatically follow from similar behavior for ENTNEG
and SENTNEG because high levels of these variables need not occur together.
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volatility risk premium declines slightly, indicating that realized volatility increases a bit more

than implied volatility around high levels of ENTSENT NEG and suggesting that elevated

ENTSENT NEG is associated with increased market stress and not simply increased risk

aversion. The figure uses end-of-month VIX values, but the pattern remains the same if we use

beginning-of-month VIX values to calculate the volatility risk premium.

5.2 Impulse Response Functions

We next investigate interactions among the aggregate variables through vector autoregressions

(VARs). The event studies of the previous section have the advantage of being nonparametric.

A VAR model imposes more assumptions but also provides a more systematic analysis, so the

perspectives complement each other.

We estimate a VAR model in six variables, initially ordered as follows: VIX, SPX RV OL

(realized volatility), SENTNEG, ENTSENT NEG, SENTPOS, and ENTSENT POS.23

The Akaike information criterion selects a model with two lags; we estimate each equation in

the VAR separately using ordinary least squares. We analyze the model through its impulse

response functions. Each impulse is a one standard deviation shock to the error term for one

variable in a Cholesky factorization of the error covariance matrix. A shock to one variable has

a direct effect on variables listed later in the order of variables but not on variables listed earlier.

Our ordering is thus stacked against finding an influence on either measure of volatility from

the entropy and sentiment measures.

The left panel of Figure 11 shows impulse response functions in response to a shock to

ENTSENT NEG, together with bootstrapped 95 percent confidence intervals.24 Both the

VIX and realized volatility have statistically significant responses to the shock. A one standard

deviation increase in ENTSENT NEG increases the VIX by 1.5 points and increases realized

volatility by two points, so a two to three standard deviation shock to ENTSENT NEG has

a large economic impact on volatility. The right panel shows corresponding results in response

to a shock to SENTNEG. There, neither VIX nor realized volatility exhibits a statistically

significant response.

Next we reverse the order of ENTSENT NEG and SENTNEG and recalculate the impulse

23Running the analysis in variance or log variance terms, with or without r− as one of the model variables,
does not change any of our results. We focus on the volatility model that excludes r− for simplicity.

24We used the R package “vars” for the VAR estimation and impulse response functions; see Pfaff (2008).
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response functions. The left panel of Figure 12 shows that the VIX and realized volatility

now have statistically significant responses to SENTNEG, increasing by roughly 1.25 and

1.75 points, respectively. But the right panel shows that they still have marginally significant

responses to ENTSENT NEG following the order change. Taking Figures 11 and 12 together

suggests the following conclusions: An increase in negative sentiment or its interaction with

entropy each predicts an increase in volatility; the effect of negative sentiment is captured by

the interaction term; but there is an effect from the interaction term that is not captured by

negative sentiment alone. This is consistent with our findings in the company-specific regressions

of Section 4.

Figures 13 and 14 show that a similar pattern holds for positive sentiment and its interaction

with entropy. A shock to the interaction variable ENTSENT POS has a statistically signifi-

cant (negative) effect on both VIX and realized volatility when it is listed before SENTPOS

(Figure 13, left panel), whereas SENTPOS does not (Figure 13, right panel). When the order

of the variables is interchanged, SENTPOS has a statistically significant effect on VIX (Fig-

ure 14, left panel), and ENTSENT POS has a marginally significant effect on both VIX and

realized volatility (Figure 14, right panel). As one would expect the magnitudes of the responses

to the positive signals are smaller than the responses to the negative signals, but the overall

pattern is similar. The pattern suggests that both positive sentiment and its interaction with

entropy influence volatility, and that the interaction term captures an effect that is not present

in the sentiment variable alone.

The time horizon of the impulse responses is also noteworthy. Consider, for example, the

two responses in the upper left portion of Figure 11. They show that the effect on volatility

of an increase in ENTSENT NEG plays out over months, peaking around four months after

the shock and dissipating slowly. In Section 4 we found that the corresponding coefficients in

the company-specific regressions remain statistically significant at lags of several months. These

time scales are markedly different from those in prior work using news sentiment to predict

returns (including Da et al. 2014, Jegadeesh and Wu 2014, Tetlock 2007, and Tetlock et al.

2008), where effects play out over days. In other words, directional information is incorporated

into prices within days, but signals forecasting elevated volatility can remain relevant for months.

Volatility is of course much more persistent than returns are, but this property is insufficient

to explain the volatility responses in Figures 11–14. Including implied and realized volatility in

the VARs controls for persistence. Although persistence of volatility could make a predictor of

high volatility in the present a predictor of high volatility in the future, the impulse responses of
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VIX and realized volatility to the news variables are consistently hump-shaped wherever they are

statistically significant. The responses at month four are therefore not simply lingering effects

of a larger response in month one, as persistence by itself would predict. In Section 7, we will

see that the hump-shaped responses are consistent with a simple model of rational inattention

of agents who face constraints on the volume of information they can process.

6 Return predictability

Much of prior work on textual analysis in finance has focused on predicting returns. While the

focus of our work has been on forecasting market stress, we want to briefly investigate whether

our “unusualness”-based news measures are useful for predicting returns, to place our work into

the context of the broader literature. It should be noted that our sample of companies is small

(only 50 firms), and all companies are in related industries (finance, insurance, real estate). This

lack of company and industry diversification stacks the cards against finding evidence of return

predictability. Furthermore, any results we do find may be unduly influenced by outliers in our

small sample of firms. Consequently, the results in this section are only indicative, and should

be interpreted with caution.

We form long-short portfolios of single names in month t based on two different news-based

sorts. We choose some fraction (4 percent, 10 percent or 20 percent) of companies for each

of the long and short portfolios, and then hold each company chosen based on the month t

signal for either one, three, or six months. The portfolio in month t holds an equal weight in

stocks identified over the prior one, three, or six months. When we do not have data in a given

month for a company that is part of the long or short portfolio, that name is exluded from that

month’s return calculation. We use U.S. dollar total returns for all names in our sample, and

approximate month t dividends by the last twelve month dividend yield divided by 12.

The two news-based sorts for forming portfolios are:

• SENTNEG: Shorts (longs) are some fraction of names j with the highest (lowest) month

t values of SENTNEGj.

• SENTPOS vs SENTNEG: Shorts (longs) are some fraction of names with the highest

values of SENTNEGj (SENTPOSj) in month t. This is similar to the portfolio scheme

from Tetlock, Saar-Tsechansky, and Macskassy (2008).
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For each of these sorts, we compute a competing sort where the sentiment measure is interacted

with ENTALLj – we refer to this as the interacted sort. Ideally, we would like to interact

positive and negative sentiment with positive and negative entropy, as we’ve done elsewhere in

the paper. However, as mentioned in Footnote 20, time t negative and positive entropies are

frequently not available, and extrapolating from past entropy introduces too much noise. So to

maximize the number of company-months of interacted news measures, we use ENTALLj –

which is almost always available for all names – as the interacting variable.

Figure 15 shows the cumulative returns for two sets of portfolios: negative sentiment with a

six month holding period where the fraction of companies chosen in a given month is 4 percent;

and positive vs negative sentiment for a one month holding period with a portfolio fraction of

20 percent. The data starts from April 1998 (the first month for which we calculate news-based

measures in our sample) and ends in December 2014. Note that the extremely high returns

in November and December of 2014 for the negative sentiment sort long-short portfolios are

correct, and are due to the portfolio’s being long Chinese banking stocks, which had large rallies

in those two months. In both cases, the interacted sort outperforms, with the economic effect

being especially large in the case of SENTPOS vs SENTNEG.

To gain further insight into these results, we regress the monthly returns of the long-short

portfolios from Figure 15 on the Fama-French global factors (market, size, value) and on the

global momentum factor.25 Table 11 shows the results. First we see that all news-based portfolios

have very little overlap with any of the Fama-French factors, with the R2’s of all regressions being

effectively zero. The portfolios exhibit a small positive loading on the small minus big (SMB)

factor and on the high minus low (HML) factor. Our portfolios thus somewhat mimick small,

value stocks (even though all stocks in our sample are large). While the alphas are economically

large (around 50 basis points per month), our tests have low power as the only significant alpha is

from the interacted negative-positive sentiment sort. The interacted monthly alphas are roughly

20-30 basis points higher than the non-interacted ones. Unusualness interacted with sentiment

outperforms sentiment only sorts in this example.

As a robustness check, Table 12 (for the negative sentiment portfolios) and Table 13 (for

the positive versus negative sentiment portfolios) report annualized Sharpe ratios and monthly

alphas of all fraction/holding-period combinations that we analyzed. Each cell in the table

reports, for a given fraction and holding period pair, the Sharpe ratio and four factor alpha

of the sentiment portfolio, the Sharpe ratio and four factor alpha of the sentiment portfolio

25Data on Fama-French global factors are obtained from Ken French’s website using the Quandl API for R.
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interacted with entropy, and the difference of the Sharpe ratio and alpha. The pattern that the

entropy interacted portfolios outperform the sentiment-only portfolios is robust across most of

the combinations of parameters that we examined.

While the results of this section should be interpreted with caution, we again find evidence

suggesting that (1) news-based measures contain information useful for forecasting future market

outcomes that is not already known to market participants, and (2) sentiment interacted with

entropy is more informative than sentiment on its own.

7 Rational inattention and information constraints

Several studies have found evidence that the limits of human attention affect market prices.

Dellavigna and Pollett (2009) find a less immediate response to earnings announced on Fridays

than other days and explain the differences through reduced investor attention. Ehrmann and

Jansen (2012) document changes in the comovement of international stock prices during World

Cup soccer matches, when traders are presumably distracted. Huberman and Regev (2001)

and Tetlock (2011) document striking stock market responses to “news” that was previously

made public. Hirshleifer, Hou, Teoh, and Zhang (2004) explain stock return predictability from

accounting data through limited investor attention. Corwin and Coughenour (2008) find that

attention allocation by market specialists affects transaction costs. Sicherman et al. (2015) doc-

ument patterns of investor attention in response to market conditions. Daniel, Hirshleifer, and

Teoh (2002) explain a broad range psychological effects on markets through limited attention.

Limited attention may help explain the patterns we observe in Sections 4 and 5. Searching

news articles to extract information about unusualness and sentiment takes time, and investors

may perceive that they have better options for gathering data with whatever resources they

allocate to making investment decisions. Consistent with Samuelson’s dictum (Jung and Shiller

2005), investors may focus on a small set of stocks and pay less attention to macro events.26

In Dellavigna and Pollett (2007), investors focus on information relevant to near-term returns

but are inattentive to information with long-term consequences. A similar effect may apply in

our setting, albeit over a shorter horizon. This would be consistent with the impulse response

functions for volatility in Section 5.2, in which the response to a signal is greater at intermediate

26In the model of Peng and Xiong (2006), investors choose instead to focus on coarser aggregate information
and pay less attention to idiosyncratic information. For our purposes, the point is that this is one of the
dimensions along which agents need to make an attention allocation decision.
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horizons than at the shortest horizons.

We can develop a stronger connection between the impulse response functions and limited

attention by building on work of Sims (2003, 2015) and Maćkowiak and Wiederholt (2009ab).

Sims (2015) presents a theoretical framework, developed in a series of papers starting with Sims

(2003), for modeling rational inattention.27 Agents face constraints or costs on information pro-

cessing and incorporate these into rational choices. Maćkowiak and Wiederholt (2009ab) build

on Sims’s framework to model sticky prices for goods; in their setting, a firm allocates limited

attention capacity to two types of information, aggregate and idiosyncratic. The qualitative

implications of reduced attention are relevant to our setting.

To develop the connection, we will let Xt denote a macro state variable such as the reciprocal

of aggregate consumption or its negative logarithm.28 For simplicity, we suppose that Xt follows

a stationary AR(1) process,

Xt+1 = ρXt + aut+1, (13)

where ρ ∈ (0, 1), and the {ut} are independent, standard normal random errors.

Agents would like to hedge macro risk associated with Xt. However, they face information

constraints that prevent them from observing Xt precisely; these constraints reflect intrinsic

difficulty in measuring the macro state as well as the limits of agents’ attention capacity. As

a consequence, agents cannot write contracts with payoffs directly determined by Xt. Instead,

they write contracts on an approximation Yt that solves

min
b,c

E[(Xt − Yt)
2]

with

Yt =
∞∑

`=0

b`ut−` +
∞∑

`=0

c`εt−`, (14)

subject to an information constraint between the processes {Yt} and {Xt}. The {εt} form a

sequence of independent, standard normal random errors independent of {ut}. Interpret Yt as

the best approximation to the macro state Xt given the information constraint.29

27Sims (2003), p.696, makes an explicit connection with the saliency of information in news media.
28This formulation makes agents averse to large values of Xt and will simplify the interpretation of the VIX

as a hedge for macro risk.
29We omit the precise definition of the information constraint because it takes several steps to develop. In the
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case of scalar (jointly) normal random variables, the constraint reduces to an upper bound on their correlation.
The general definition is detailed in Maćkowiak and Wiederholt (2009ab), and relevant background from infor-
mation theory is reviewed in Sims (2003, 2015). The resulting Yt is optimal among approximations with the
moving average representation in (14).

Maćkowiak and Wiederholt (2009a) show that the effect of the information constraint is

equivalent to having agents observe a noisy signal St = {. . . , S0, S1, . . . , St} of the past rather

than the complete history {. . . , (u0, ε0), (u1, ε1), . . . , (ut, εt)}. In particular, Yt = E[Xt|St],

meaning that the best observable approximation to the macro state is the conditional expectation

of the true macro state given the agents’ available information.

Next we consider the price at time t of a contract paying Yt+1 at time t. We assume a

stochastic discount factor of the form30 exp(λut+1 − λ2/2), where ut+1 is the innovation to the

macro state in (13). This factor attaches a greater discount to cash flows that covary negatively

with shocks to Xt. Ordinarily, the price at time t would be the time-t conditional expectation of

the product of the payoff and the stochastic discount factor. Given agents’ limited information

St about the past, we model the price as31

Vt = E eλut+1−λ2/2Yt+1|St .
[ ]

The key implication of this formulation (derived in the appendix) is that the impulse response

of Vt to a shock to the error in Xt is hump-shaped if agents’ information processing constraint

is sufficiently tight.

To map this observation to the impulse response functions in Section 5.2, think of the VIX as

the price of a contract that imperfectly hedges macro risk: higher levels of the VIX are associated

with market stress, so a contract that pays more in these states partly offsets a macro risk.

Interpret the aggregate variable ENTSENT NEG as a proxy for the macro state. The model

we have outlined predicts that when the information constraint between ENTSENT NEG and

the VIX is tight, the impulse response function should be humped, just as we saw in Section 5.2.

The information constraint faced by agents limits how quickly innovations to the macro state

get incorporated in the VIX.

A more precise mapping between the model and our application should recognize that

30We assume an interest rate of zero for simplicity. If we interpret negative Xt as the log of aggregate
consumption, then for a representative agent with power utility, a time discount coefficient δ and a risk-aversion
parameter λ, the stochastic discount factor would be exp(−δ+λ(aut+1−(1−ρ)Xt)). In this case, the one-period
interest rate is r t

t = δ + λ(1 − ρ)Yt − c for some constant c ≥ 0 and Yt = E[Xt|S ]. In our discussion, we use a
simplified version of the stochastic discount factor for clarity of exposition.

31Peng and Xiong (2006) develop a theoretical framework for asset pricing in a model with rational inattention.
Our pricing formula has the same general structure as their equation (71).
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ENTSENT NEG is itself at best a noisy observation of the macro state, say ENTSENT (t) =

Xt + σηηt, for some independent error term ηt. Then a one standard deviation shock to

ENTSENT NEG combines shocks to ut+1 and ηt+1, but {Vt} responds only to the shock

to ut+1. In this interpretation, the impulse response functions we observe in Section 5.2 are

averages over the responses to random shocks ut+1 in the unseen Xt, conditional on the total

shock to the error in ENTSENT NEG equaling one standard deviation. The average impulse

response preserves the hump shape at least if the error variance σ2
η is not too large.

8 Conclusion

Using techniques from natural language processing, we develop a methodology for classifying the

degree of “unusualness” of news. Applying our measure of unusualness to a large news dataset

that we obtain from Thomson Reuters, we show that unusual negative news forecasts volatility

at both the company-specific and aggregate level. News shocks are impounded into volatility

over the course of several months. This is a much longer time horizon than previous studies –

which have focused on returns rather than volatility – have documented.

Across multiple analyses, we find that interacted measures of unusualness and sentiment

provide the best predictors of future volatility among the news measures we study:

• In company-specific regressions of implied volatility on lagged news measures, unusual

negative news is economically and statistically significant at lags of up to six months. It

increases average R2 across companies by more than sentiment or unusualness measures

alone.

• Our interacted measure remains significant when we control for other predictors of volatil-

ity (lagged volatility measures and negative returns), indicating that the information in

this news measure is not fully reflected in contemporaneous prices.

• At the aggregate level, we run vector autoregressions of the VIX and realized market

volatility with several aggregate news variables. Impulse response functions show that a

shock to our interacted measure of unusual negative news predicts an increase in implied

and realized volatility over several months. The effect is stronger for our interacted variable

than for negative sentiment alone.

• We measure the performance of long-short portfolios sorted on sentiment measures and
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on sentiment measures interacted with unusualness measures. Across multiple portfolio

rules, sorts based on the interacted measures typically outperform sorts based on sentiment

alone.

In our aggregate analysis, we find that news shocks affect realized and implied volatilities in a

hump-shaped manner over time. This response would not obtain simply from the persistence of

volatility: in this case the effect of a news shock would dissipate monotonically. A hump-shaped

response indicates that news is not absorbed by the market instantaneously. We argue that this

type of response is consistent with investors who face constraints on the rate at which they can

process information.

Using tools from the rational inattention literature, we develop a simple model of the price

of a security which tracks the true macro state of the world subject to an informational flow

constraint. When the flow rate is sufficiently restricted, the model generates a hump-shaped

price response to macro innovations.

The connection we make between this market friction and an empirical measurement of

how market prices incorporate news is novel, and leads to many interesting research questions.

Primary among these is how to relate our results to Samuelson’s dictum on micro- vs macro-

efficiency. We hope to pursue this question in future research.

Finally, because of our finding that news is incorporated into market volatility only gradually,

our methodology should prove useful for risk monitoring.

A Appendix

A.1 Data cleaning

This section summarizes our data cleaning methodology. Further details are available from the

authors.

Articles whose headlines begin with REG- (regulatory filings) and TABLE- (data tables) are

deleted. The reuters tag at the start of an article and in the end-of-article disclaimer is removed,

as is any additional post article information identifying the author of the article.

Punctuation characters (, or ; and so on) and quotation marks are deleted, as are prefixes

and suffixes that are followed by a period (e.g. mr, corp, etc.). All known references to any of
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the fifty companies in our sample are replaced with the string company .32 Different references

to the same, multi-word entity are replaced with a unique string. For example, all variations

of standard & poor’s are replaced with snp, references to new york stock exchange are

replaced with nyse, and so on.

References to years, of the form 19xx-xx or 20xx-xx or similar forms, are replaced with y .

We replace all numbers identified as being in the millions (billions) with mn ( bn ). Other

numbers or fractions are replaced with n . The symbols & and $ are deleted. All references to

percent (e.g. % or pct or pctage etc.) are replaced with pct.

We make an attempt to delete all references to email addresses or web sites, though we do

not have a systemic way of doing so.

Following this text processing step, we use the NLTK package from Python to convert

the raw text into n-grams. First sent tokenize() segments the text into sentences. Then

word tokenize() breaks the sentence into single words. In this step, standard contractions are

split (e.g. don’t becomes do and n’t). Finally ngrams() is used to create 3- and 4-grams from

the post-processed, tokenized text.

A.2 Rational inattention

Proposition 3 of Maćkowiak and Wiederholt (2009a) shows that the optimal Yt in (14) has

b` = a

(
ρ` − 1

22κ

( ρ

22κ

)`
)

, (15)

and

c` = c0
ρ

22κ

`

,
( )

(16)

where κ is the upper bound constraint on the information flow rate between the sequences {Xt}
and {Yt}; see also Section 3.2.2 of Sims (2015). The definition of the information flow rate

is detailed in Maćkowiak and Wiederholt (2009ab), and relevant background from information

theory is reviewed in Sims (2003, 2015). At κ = ∞, b` = aρ` and c` = 0, so Yt coincides with

the moving-average representation of the AR(1) process Xt. At κ = 0, we have b` = 0, and no

information about {ut} is incorporated into Yt; in fact, Yt is identically zero in that case because

32It is likely that we have not identified all possible references to companies in our sample.
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c0 = 0 at κ = 0.

The innovation ut+1 is independent of past values of ut and εt, and it remains so conditional

on the agents’ information St. A standard calculation for normal random variables therefore

gives

E
[
eλut+1−λ2/2Yt+1|St

]
= E[b0λ + Yt+1|St].

It follows from (15)–(16) (and is shown explicitly in Appendix G of Maćkowiak and Wiederholt

2009a) that

Yt+1 =
ρ

22κ
Yt + 1− 1

22κ
Xt+1 + c0εt+1.

( ) ( )
Replacing X with the right side of (13) and using the fact that E[X |St

t+1 t ] = Yt (proved in

Appendix H of Maćkowiak and Wiederholt 2009a) we get

E[Yt+1|St] =
ρ

22κ
Yt + 1− 1

22κ
ρE[Xt|St] = ρYt

( ) ( )
and then

Vt = b0λ + ρYt.

The price premium b0λ increases with κ because b0 does. In other words, the contract is worth

more with looser information constraints because it yields a better hedge in that case.

Given this representation and (15), the response of Vt, Vt+1, . . . to an impulse of ut = 1 is

given by b0λ + ρbt, t = 0, 1, . . . . As illustrated in Figure 16, for small values of κ, this is a

hump-shaped function of t, and for large values of κ it decreases monotonically.
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Table 1: Companies included in the Thomson Reuters news sample.

1 Berkshire Hathaway 26 Australia & New Zealand Bank
2 Wells Fargo 27 AIG
3 Ind & Comm Bank of China 28 BNP Paribas
4 JP Morgan Chase 29 National Australia Bank
5 China Construction Bank 30 Morgan Stanley
6 Bank of China 31 Itau Unibanco
7 HSBC Holdings 32 UBS
8 Agricultural Bank of China 33 Bank of Communications
9 Bank of America 34 Royal Bank of Scotland

10 Visa 35 Prudential
11 China Life Insurance 36 Simon Property Group
12 Citigroup 37 Barclays
13 Commonwealth Bank of Australia 38 Bank of Nova Scotia
14 Ping An Insurance 39 Blackrock
15 Mastercard 40 AXA
16 Banco Santander 41 Banco Bilbao Vizcaya Argentaria
17 Westpac Bank 42 China Merchants Bank
18 American Express 43 Metlife
19 Royal Bank of Canada 44 Banco Bradesco
20 Lloyds 45 Nordea Bank
21 Goldman Sachs 46 Zurich Insurance
22 Mitsubishi UFJ 47 Intesa Sanpaolo
23 US Bancorp 48 ING
24 Allianz 49 Sumitomo Mitsui
25 TD Bank 50 Allied Irish Banks

39



Table 2: Companies are grouped by country of domicile. Within each country, the table shows
the average market capitalization of the companies in the sample as of November 2015. Also
shown are the percent of all articles in the Thomson Reuters dataset that mention companies
from a particular country of domicile, as well the number of firms classified as being domiciled
in a given country.

Avg mkt cap (usd) Percent of all articles Number of firms
UNITED STATES 137.47 44.25 15

BRITAIN 82.73 19.11 5
AUSTRALIA 70.45 6.35 4

CANADA 72.45 6.08 3
SPAIN 68.28 4.68 2

FRANCE 70.59 4.63 2
NETHERLANDS 55.70 3.19 1

CHINA 136.00 2.70 8
GERMANY 80.20 2.22 1

SWITZERLAND 57.28 1.95 2
JAPAN 72.26 1.69 2

IRELAND 41.84 1.04 1
ITALY 57.52 0.80 1

BRAZIL 37.46 0.68 2
SWEDEN 45.87 0.63 1

Table 3: Correlation and standard error between different entropy and sentiment measures and
1 month at-the-money implied volatilities for the 50 stocks in our sample, and for the aggregate
level sentiment and entropy series. The aggregate entropy series used here are the ones derived
from the list of n-grams from all articles in month t, and not from the first principal component of
the single name series. So each correlation is an average across 51 observations. If a stock implied
volatility series is not present, and for the aggregate measures, the VIX index is used instead of
single name implied volatility. Cross-sectional standard errors, which assume independence, are
shown.

ENTNEG ENTPOS ENTALL SENTNEG SENTPOS
Mean correlation 0.197 -0.003 0.095 0.309 -0.102

S.E. 0.026 0.019 0.024 0.024 0.017
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Table 4: This table shows the top and bottom three 4-grams, as determined by their contribution
to ENTNEG in selected months of our sample. The “Total” column shows the number of times
the given n-gram has appeated in that month, and the “Rank” column gives its rank by entropy
contribution – this is lower than 5000 because we restrict analysis to those n-grams which are
classified as having negative sentiment. pi and mi are the in-sample probability and the training
sample conditional probability for the n-gram (see equation (6)). Note that some of the 4-grams
come from the same 5-gram.

Month Year w1 w2 w3 w4 Total Rank p i m i
9
9

2008
2008

nyse
the

order
collapse

imbalance
of

mn
lehman

81
38

1
2

0.009
0.004

0.020
0.004

9 2008 filed for bankruptcy protection 138 3 0.016 0.245
9 2008 problem accessing the internet 33 400 0.004 0.961
9
9

2008
2008

imbalance
order

n
imbalance

shares
n

on
shares

299
299

401
402

0.034
0.034

0.999
0.999

5
5

2012
2012

bn
the

from
euro

a
zone

failed
crisis

28
36

1
2

0.008
0.011

0.009
0.087

5 2012 declined to comment on 56 3 0.017 0.258
5 2012 you experience problem accessing 77 208 0.023 0.998
5 2012 experience problem accessing the 77 209 0.023 0.998
5 2012 problem accessing the internet 77 210 0.023 0.998
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Table 5: This table reports summary statistics for the aggregate news-based measures, as well
as the VIX and realize volatility for S&P 500. Start and End refer to the start and end dates
of data availability for the variable in question. SENTNEG and SENTPOS are aggregate
negative and positive sentiment measures. ENTALL, ENTNEG and ENTPOS are the first
principal components of single-name level entropy measures applied to all n-grams, and those
classified as negative and positive respenctively. ENTSENT NEG interacts SENTNEG with
ENTNEG. All data series are monthly, and run from April 1998 to December 2014.

ENTNEG ENTPOS ENTALL SENTNEG SENTPOS ENTSENT NEG VIX SPX rvol
Mean 7.401 6.443 7.446 3.744 2.233 28.156 21.169 17.366

Min 2.140 2.172 4.724 1.484 0.819 7.881 10.420 6.310
Max 11.592 16.747 9.908 8.077 4.958 77.348 59.890 79.190
SD 1.837 2.092 1.066 1.265 0.594 13.948 7.876 9.892

Table 6: This table reports contemporaneous correlations among monthly levels of our news-
based indicators and the VIX index. SENTNEG and SENTPOS are aggregate negative
and positive sentiment measures. ENTALL, ENTNEG and ENTPOS are the first principal
components of single-name level entropy measures applied to all n-grams, and those classified as
negative and positive respenctively. ENTSENT NEG interacts SENTNEG with ENTNEG.

SENTNEG SENTPOS ENTALL ENTNEG ENTPOS ENTSENT NEG VIX
SENTNEG 1.00
SENTPOS -0.14 1.00
ENTALL -0.18 -0.42 1.00
ENTNEG 0.19 -0.44 0.71 1.00
ENTPOS -0.09 -0.16 0.56 0.34 1.00

ENTSENT NEG 0.86 -0.32 0.19 0.64 0.08 1.00
VIX 0.46 -0.37 0.30 0.48 0.15 0.60 1.00
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Table 7: This table reports the results of estimating equation (9) in the text. “Num Lags” refers
to the order of the lag operator Ls, “Lag IVOL” refers to whether lagged values of IV OLj

1mo are
included on the right hand side, and “Fwd Step” is the value of φ. We regress single-name implied
volatility in month t on lags of each of the news-based measures in this table (the evaluation
regression). We then repeat the same regression using lags of ARTICLE PERCTOT as the
regressor (the control regression). We run these regressions for each single-name in our sample,
and collect the R2’s across all single-name regressions. The “3 var” model uses SENTNEG,
ENTNEG, and ENTSENT NEG as regressors (as described in Section 4.1). We then measure
the area under the R2 curve (Pr(R2 > x)) for the control and evaluation regressions. This table
reports the differences in the areas under the two curves (equal to the average of the pairwise R2

differences). Standard errors are obtained by assuming the pairwise differences in R2’s between
the control and evaluation regressions are independent across all names. ’*’, ’**’, and ’***’
indicate significance at the 0.10, 0.05, and 0.01 levels respectively. The “Control mean R2” rows
show the mean of the cross-sectional R2’s from the control regressions.

1 2 3 4

Num Lags 6 3 3 3
Lag IVOL false false true true
Fwd Step 0 0 0 1
ENTNEG 0.09*** 0.063*** -0.001 0.003
ENTPOS -0.052** -0.047** -0.016** -0.008
ENTALL -0.028 -0.031** 0 0.001

SENTNEG 0.138*** 0.116*** 0.005** 0.009***
SENTPOS -0.019 -0.024* 0.001 0.006

ENTSENT NEG 0.221*** 0.177*** 0.004 0.013***
ENTSENT POS -0.052** -0.035** -0.011 0

3 var 0.181*** 0.145*** 0.005 0.009
1 var Control mean R2 0.105 0.0796 0.69 0.549
3 var Control mean R2 0.28 0.18 0.711 0.595

43



d
in

g, in
ts

a n
d
ar

d

e ie
n

h st
a

co
lu

m
n effi

c
co

th
e m

p
u
ti

n
g

oc

in m
-m

os
t

ro

w
n

ot
to f

sh
o b

o ti
m

e
wis yt b .

ar
ia

b
le

h
e el
y

t ivtfo ecv
t

su
m cl
u
st

er
ed

e re
sp

en
d
en

th
e ar el
s

vp ls

d
e

w
s

T
h
e

sh
o

si
d
u
a le

1
e 0.

0

o” R

2)
.

an
d

(1 T
w

5,

m
L
as

t

0.
0

fr
o eff

ec
ts

.
0,

d
el

S
u
m

fi
x
ed

0.
1

m
o

“
d
iv

id
u
al th

e

p
an

el
el

ed at
e

e la
b

n
c

in

th w
of or

w
it

h

su
lt

s
T

h
e

si
gn

ifi
ca

ee ru
n

r
w

s. is

th
e

or
s in

d
ic

at

or
t

th
e

**
’

re
p ’*in re
gr

es
si

on
re

gr
es

so
rs n
d

b
le h
e

a

ta T
’*

*’
,

T
h
is

: ’*
’,

8 th
e

co
lu

m
n
.

rs
.

b
le

a
T w

it
h h

ea
c

er
ro

S
E

N
T

P
O

S
E

N
T

P
O

S
E

N
T

S
E

N
T

P
O

S
S
E

N
T

N
E

G
E

N
T

N
E

G
E

N
T

S
E

N
T

N
E

G
A

R
T

IC
L
E

P
E

R
C

T
O

T
iv

ol
l1

-0
.0

01
0.

00
1

0.
00

0
0.

00
1

0.
00

1
0.

00
1

0.
00

1
iv

ol
l2

-0
.0

01
-0

.0
01

-0
.0

01
0.

00
0

-0
.0

03
**

*
-0

.0
02

*
0.

00
3*

**
rv

ol
l1

0.
00

0
0.

00
1

0.
00

1
0.

00
4*

**
0.

00
4*

**
0.

00
6*

**
0.

00
0

rv
ol

l2
0.

00
0

0.
00

0
0.

00
0

-0
.0

01
0.

00
1

0.
00

0
-0

.0
02

**
*

re
t

m
i
l1

-0
.0

07
**

-0
.0

07
**

-0
.0

07
**

0.
00

3
0.

00
9*

**
0.

00
7*

*
0.

00
7*

**
re

t
m

i
l2

0.
00

0
-0

.0
05

-0
.0

05
0.

00
3

0.
00

6*
*

0.
00

7*
*

-0
.0

01
S
E

N
T

P
O

S
l1

0.
14

6*
**

S
E

N
T

P
O

S
l2

0.
09

5*
**

E
N

T
P

O
S

l1
0.

15
0*

**
E

N
T

P
O

S
l2

0.
14

0*
**

E
N

T
S
E

N
T

P
O

S
l1

0.
13

1*
**

E
N

T
S
E

N
T

P
O

S
l2

0.
07

5*
**

S
E

N
T

N
E

G
l1

0.
22

1*
**

S
E

N
T

N
E

G
l2

0.
16

9*
**

E
N

T
N

E
G

l1
0.

19
5*

**
E

N
T

N
E

G
l2

0.
15

1*
**

E
N

T
S
E

N
T

N
E

G
l1

0.
19

5*
**

E
N

T
S
E

N
T

N
E

G
l2

0.
11

3*
**

A
R
T

IC
L
E

P
E

R
C

T
O

T
l1

0.
36

6*
**

A
R
T

IC
L
E

P
E

R
C

T
O

T
l2

0.
21

7*
**

S
u
m

L
as

t
T

w
o

0.
24

1*
**

0.
29

**
*

0.
20

7*
**

0.
39

**
*

0.
34

6*
**

0.
30

7*
**

0.
58

3*
**

R
2

ad
j

0.
04

2
0.

05
2

0.
02

8
0.

15
4

0.
13

6
0.

16
6

0.
26

4

44



d
in

g, in
ts

a n
d
ar

d

e ie
n

h st
a

co
lu

m
n effi

c
co

th
e m

p
u
ti

n
g

oc

in m
-m

os
t

ro

w
n

ot
to f

sh
o b

o ti
m

e
wis yt b .

ar
ia

b
le

h
e el
y

t ivtfo ecv
t

su
m cl
u
st

er
ed

e re
sp

en
d
en

th
e ar el
s

vp ls

d
e

w
s

T
h
e

sh
o

si
d
u
a le

1
e 0.

0

o” R

1)
.

an
d

(1 T
w

5,

m
L
as

t

0.
0

fr
o eff

ec
ts

.
0,

d
el

S
u
m

fi
x
ed

0.
1

m
o

“
iv

id
u
al th

e

p
an

el
el

ed at
e

e la
b

in
d

n
c

th w
of or

w
it

h

su
lt

s
T

h
e

si
gn

ifi
ca

ee ru
n

r
w

s. is

th
e

or
s in

d
ic

at

or
t

th
e

**
’

re
p ’*in re
gr

es
si

on
re

gr
es

so
rs n
d

b
le h
e

a

ta T
’*

*’
,

T
h
is

: ’*
’,

9 th
e

co
lu

m
n
.

rs
.

b
le

a
T w

it
h h

ea
c

er
ro

iv
ol

(1
)

iv
ol

(2
)

iv
ol

(3
)

iv
ol

(4
)

iv
ol

(5
)

iv
ol

(6
)

iv
ol

(7
)

iv
ol

l1
0.

30
7*

**
0.

30
5*

**
0.

30
5*

**
0.

30
4*

**
0.

25
2*

**
0.

25
1*

**
0.

28
9*

**
iv

ol
l2

0.
09

4*
**

0.
08

0
0.

08
0

0.
09

1*
**

0.
10

3*
**

0.
10

2*
**

0.
06

7*
**

rv
ol

l1
0.

20
9*

**
0.

20
9*

**
0.

20
8*

**
0.

20
7*

**
0.

22
6*

**
0.

22
3*

**
0.

22
3*

**
rv

ol
l2

0.
10

2*
**

0.
10

8*
**

0.
10

7*
**

0.
09

8*
**

0.
10

4*
**

0.
10

0*
**

0.
11

9*
**

re
t

m
i
l1

0.
36

4*
**

0.
37

5*
**

0.
37

4*
**

0.
35

9*
**

0.
42

0*
**

0.
41

1*
**

0.
37

1*
**

re
t

m
i
l2

-0
.1

75
**

*
-0

.1
66

**
*

-0
.1

67
**

*
-0

.1
73

**
*

-0
.1

73
**

*
-0

.1
74

**
*

-0
.1

65
**

*
A

R
T

IC
L
E

P
E

R
C

T
O

T
l1

-0
.6

78
**

-0
.6

66
*

-0
.6

38
*

-0
.7

32
**

-0
.8

06
**

-0
.9

13
**

*
-0

.6
81

**
A

R
T

IC
L
E

P
E

R
C

T
O

T
l2

0.
27

0
0.

14
8

0.
16

8
0.

23
3

0.
14

9
0.

24
7

0.
22

4
S
E

N
T

P
O

S
l1

-0
.4

22
**

S
E

N
T

P
O

S
l2

-0
.2

35
E

N
T

P
O

S
l1

-0
.3

69
E

N
T

P
O

S
l2

-0
.3

95
E

N
T

S
E

N
T

P
O

S
l1

-0
.6

35
**

*
E

N
T

S
E

N
T

P
O

S
l2

-0
.4

06
S
E

N
T

N
E

G
l1

0.
80

2*
**

S
E

N
T

N
E

G
l2

0.
46

7*
E

N
T

N
E

G
l1

0.
22

5
E

N
T

N
E

G
l2

0.
75

7*
**

E
N

T
S
E

N
T

N
E

G
l1

0.
73

9*
**

E
N

T
S
E

N
T

N
E

G
l2

0.
80

7*
**

S
u
m

L
as

t
T

w
o

-0
.6

57
**

-0
.7

64
**

-1
.0

41
**

*
1.

26
9*

**
0.

98
2*

**
1.

54
6*

**
-0

.4
56

R
2

ad
j

0.
57

6
0.

57
6

0.
57

6
0.

57
7

0.
59

3
0.

59
4

0.
57

4

45



d
in

g, in
ts

n
d
ar

d

h
ea ie
n

st
a

co
lu

m
n

effi
c

co
th

e m
p
u
ti

n
g

oc

in m
-m

os
t

r
ot

to on f

w
sh

o b
o ti

m
e

is w y
far
ia

b
le

t b .

h
e

t ivt

ov ec

en
d
en

t
su

m cl
u
st

er
ed el

y
e re

sp

th
e ar el
s

d
ep

vls le

w
s

T
h
e 1

sh
o

si
d
u
a

e 0.
0

. o” R
an

d

11
)

( T
w

omr L
as

t
eff

ec
ts

.
5,

0.
0

f
d
el

S
u
m

fi
x
ed 0,

0.
1

m
o

“
el

ed
iv

id
u
al th

e

p
an

el

at

la
b e

in
d

th
e n
c

f w
o ors w
it

h

u
lt

es T
h
e

si
gn

ifi
ca

er ru
n

h
e

t w
s. is

o
or

ts r in
d
ic

at

th
e

**
’

re
p

’*in
b
le re

gr
es

si
on

re
gr

es
so

rs n
d

h
e

ta

a
T

T
h
is

’*
*’

,

: ’*
’,

10 th
e

co
lu

m
n
.

rs
.

b
le h

a
T w

it
h

ea
c

er
ro

rv
ol

(1
)

rv
ol

(2
)

rv
ol

(3
)

rv
ol

(4
)

rv
ol

(5
)

rv
ol

(6
)

rv
ol

(7
)

iv
ol

l1
0.

26
9*

**
0.

26
5*

**
0.

26
4*

**
0.

26
4*

**
0.

29
5*

**
0.

29
2*

**
0.

24
5*

**
iv

ol
l2

0.
12

0*
**

0.
12

8*
**

0.
12

8*
**

0.
11

7*
**

0.
11

8*
**

0.
11

8*
**

0.
09

1*
**

rv
ol

l1
0.

33
2*

**
0.

31
2*

**
0.

31
1*

**
0.

33
0*

**
0.

31
1*

**
0.

30
6*

**
0.

34
9*

**
rv

ol
l2

0.
12

2*
**

0.
13

0*
**

0.
13

0*
**

0.
11

6*
**

0.
11

6*
**

0.
10

8*
**

0.
14

0*
**

re
t

m
i
l1

0.
85

9*
**

0.
92

8*
**

0.
92

5*
**

0.
85

0*
**

0.
86

0*
**

0.
84

5*
**

0.
86

4*
**

re
t

m
i
l2

-0
.0

93
-0

.1
09

-0
.1

14
-0

.0
90

-0
.1

06
-0

.1
05

-0
.0

78
A

R
T

IC
L
E

P
E

R
C

T
O

T
l1

-1
.2

47
**

*
-1

.0
50

**
-0

.9
75

**
-1

.3
15

**
*

-1
.3

22
**

*
-1

.4
33

**
*

-1
.2

70
**

*
A

R
T

IC
L
E

P
E

R
C

T
O

T
l2

0.
02

6
-0

.2
44

-0
.2

54
-0

.0
48

-0
.1

47
-0

.0
31

-0
.0

24
S
E

N
T

P
O

S
l1

-0
.6

84
**

S
E

N
T

P
O

S
l2

-0
.4

00
E

N
T

P
O

S
l1

0.
05

1
E

N
T

P
O

S
l2

-0
.4

31
E

N
T

S
E

N
T

P
O

S
l1

-0
.5

56
*

E
N

T
S
E

N
T

P
O

S
l2

-0
.6

62
*

S
E

N
T

N
E

G
l1

1.
64

6*
**

S
E

N
T

N
E

G
l2

0.
23

3
E

N
T

N
E

G
l1

0.
98

6*
**

E
N

T
N

E
G

l2
0.

52
1*

E
N

T
S
E

N
T

N
E

G
l1

1.
97

7*
**

E
N

T
S
E

N
T

N
E

G
l2

0.
45

1
S
u
m

L
as

t
T

w
o

-1
.0

85
**

*
-0

.3
79

-1
.2

17
**

*
1.

87
8*

**
1.

50
7*

**
2.

42
8*

**
-1

.2
94

**
*

R
2

ad
j

0.
58

9
0.

58
3

0.
58

4
0.

59
1

0.
59

2
0.

59
5

0.
58

7

46



Table 11: Results of monthly regressions of news-based zero-investment portfolio returns on the
Fama-French global three factor model (market, size (SMB), and value (HML)), and a global
momentum factor (WML). The portfolio formation criteria are explained in Section 6. Alphas
are in percent (e.g. 0.50 means 50 basis points). Robust t-statistics are shown in parentheses, and
are obtained using Newey-West standard errors with automatic lag selection, as implemented
in the sandwich package in R.

Model Alpha Mkt RF SMB HML WML Adj R2

NEG[N=6,f=0.04] 0.454 0.066 0.230 0.126 0.040 -0.009
(0.95) (0.57) (1.24) (0.69) (0.36)

NEG[N=6,f=0.04] w/ ENTALL 0.634 -0.019 0.185 0.189 0.046 -0.009
(1.40) (-0.19) (0.90) (1.09) (0.38)

POSNEG[N=1,f=0.2] 0.185 0.032 0.163 0.059 -0.031 -0.012
(0.96) (0.56) (1.38) (0.27) (-0.40)

POSNEG[N=1,f=0.2] w/ ENTALL 0.4732 0.0117 0.1323 0.0073 -0.0447 -0.012
(2.06) (0.14) (1.27) (0.06) (-0.52)
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Table 12: For the negative sentiment sort, this table shows the annualized Sharpe ratios and
monthly alphas from the four factor model described in Section 6. The table columns correspond
to different sample fractions used in portfolio formation, and the rows correspond to different
holding periods for the stocks in each portfolio. Each block shows the sentiment-only sort Sharpe
ratios and alphas, the ones from the sentiment-entropy-interacted sort (labeled INT ), as well as
the difference of two (interacted minus non-interacted). Alphas are in percent (e.g. 0.50 means
50 basis points). Regressions are run with monthly data.

Fraction 0.04 0.1 0.2

Months held 1

SR 0.3785 0.2444 0.4173
SR INT 0.4366 0.1102 0.3285
Diff SR 0.0581 -0.1341 -0.0887

Alpha 0.9487 0.3455 0.4720
Alpha INT 1.0616 0.0987 0.3724
Diff Alpha 0.1129 -0.2467 -0.0996

Months held 3

SR 0.124 0.20214 0.2175
SR INT 0.291 0.20099 0.1984
Diff SR 0.167 -0.00115 -0.0192

Alpha 0.221 0.11168 0.1072
Alpha INT 0.474 0.12717 0.1322
Diff Alpha 0.253 0.01549 0.0249

Months held 6

SR 0.3747 0.3377 0.24552
SR INT 0.4665 0.3739 0.23934
Diff SR 0.0919 0.0362 -0.00619

Alpha 0.4537 0.1907 0.10932
Alpha INT 0.6342 0.3425 0.18966
Diff Alpha 0.1804 0.1518 0.08034
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Table 13: For the positive vs negative sentiment sort, this table shows the annualized Sharpe
ratios and monthly alphas from the four factor model described in Section 6. The table columns
correspond to different sample fractions used in portfolio formation, and the rows correspond
to different holding periods for the stocks in each portfolio. Each block shows the sentiment-
only sort Sharpe ratios and alphas, the ones from the sentiment-entropy-interacted sort (labeled
INT ), as well as the difference of two (interacted minus non-interacted). Alphas are in percent
(e.g. 0.50 means 50 basis points). Regressions are run with monthly data.

Fraction 0.04 0.1 0.2

Months held 1

SR -0.142 0.0619 0.178
SR INT 0.222 -0.0524 0.457
Diff SR 0.364 -0.1143 0.278

Alpha -0.259 0.0345 0.185
Alpha INT 0.418 -0.0582 0.473
Diff Alpha 0.677 -0.0927 0.288

Months held 3

SR -0.2769 -0.246 -0.1016
SR INT -0.2537 -0.381 0.0665
Diff SR 0.0232 -0.136 0.1680

Alpha -0.4975 -0.302 -0.1361
Alpha INT -0.5699 -0.453 0.0307
Diff Alpha -0.0724 -0.151 0.1668

Months held 6

SR -0.20735 -0.12945 -0.1393
SR INT -0.19877 -0.17426 0.0144
Diff SR 0.00857 -0.04481 0.1537

Alpha -0.41354 -0.16644 -0.1349
Alpha INT -0.40896 -0.17037 0.0196
Diff Alpha 0.00459 -0.00393 0.1544
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Figure 1: Monthly article count in the Thomson Reuters news sample.
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Figure 2: Monthly plots of SENTNEG(t) and SENTPOS(t) as defined in (7). Each series
computes the proportion of all n-grams in a given month that are classified as having either
positive or negative sentiment. Superimposed on each sentiment series is the scaled VIX index.
Correlation between sentiment and VIX is shown in the upper right hand corner of each chart.
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Figure 3: Monthly plots of ENTALL(t), ENTNEG(t) and ENTPOS(t) as defined in Section
3.3. Each series is the first principal component of the associated single name entropy measures,
for those names with observations available in all time periods of the sample. Superimposed on
each entropy series is the scaled VIX index. Correlation between entropy and VIX is shown in
the upper right hand corner of each chart.
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Figure 4: Monthly plot of ENTSENT NEG(t) ≡ ENTNEG(t) × SENTNEG(t). The en-
tropy series is the first principal component of the associated single name entropy measures,
for those names with observations available in all time periods of the sample. SENTNEG is
defined in (7). Superimposed on ENTSENT NEG is the scaled VIX index. The correlation
between ENTSENT NEG and VIX is shown in the upper right hand corner.
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Figure 5: The results of the regression in (9) with NEWSj set to the percentage of articles
in month t that mention company j. The ARTICLE PERCTOT variables are normalized to
have unit standard deviation. Shown are the cross-sectional mean of each coefficient with a two
standard error band, and a plot of 1 minus the cumulative distribution function of the unadjusted
R2’s from the single name regressions, i.e. f(x) = Pr(R2 > x), with ARTICLE PERCTOT as
the right hand side variable. Note the x-axis starts at 1 and decreases to 0. Data are monthly.
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Figure 6: The results of the regression in (9) with NEWSj set to the month t interacted value
of negative sentiment with negative entropy for company j. The ENTSENT NEG variables
are normalized to have unit standard deviation. Shown are the cross-sectional mean of each
coefficient with a two standard error band, and a plot of 1 minus the cumulative distribution
function of the unadjusted R2’s from the single name regressions, i.e. f(x) = Pr(R2 > x), as well
as the control R2 curve for ARTICLE PERCTOT . Note the x-axis starts at 1 and decreases
to 0. Data are monthly.
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Names in cross−section = 38
Minimum observations = 60

Reg summary for future implied vol on ENTNEG, SENTNEG and ENTSENT_NEG 
 lags=6 ivol=false fwd step=0

Figure 7: The results of the regression in (9) with three news-based variables: SENTNEG,
ENTNEG and ENTSENT NEG, all of which are normalized to have unit standard de-
viation. Shown are the cross-sectional mean of each coefficient with a two standard er-
ror band, and a plot of 1 minus the cumulative distribution function of the unadjusted
R2’s from the single name regressions, i.e. f(x) = Pr(R2 > x), as well as the con-
trol R2 curve using ARTICLE PERCTOT , NGRAM PERCTOT and the interaction term
ARTICLE PERCTOT ×NGRAM PERCTOT as the regressors. Note the x-axis starts at 1
and decreases to 0. Data are monthly.
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Figure 8: Average level of the VIX 12 months before and after high (left) and low (right) values
of the VIX. High and low values are defined by the top and bottom quintiles. Dashed lines show
plus and minus two standard errors.
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Figure 9: Average level of the VIX 12 months before and after high (left) and low (right) values
of various entropy and sentiment measures. High and low values are defined by the top and
bottom quintiles for each measure. Dashed lines show plus and minus two standard errors.
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Figure 11: Impulse response functions for a shock to ENTSENT NEG (left) and SENTNEG
(right). The order of the variables in the VAR model matches the order of the figures in each
block of six, reading left to right, then top to bottom. Dashed lines show 95 percent bootstrap
confidence intervals. The horizontal time axis is in months.
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Figure 12: Impulse response functions for a shock to SENTNEG (left) and ENTSENT NEG
(right). The order of the variables in the VAR model matches the order of the figures in each
block of six, reading left to right, then top to bottom. Dashed lines show 95 percent bootstrap
confidence intervals. The horizontal time axis is in months.
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Figure 13: Impulse response functions for a shock to ENTSENT POS (left) and SENTPOS
(right). The order of the variables in the VAR model matches the order of the figures in each
block of six, reading left to right, then top to bottom. Dashed lines show 95 percent bootstrap
confidence intervals. The horizontal time axis is in months.
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Figure 14: Impulse response functions for a shock to SENTPOS (left) and ENTSENT POS
(right). The order of the variables in the VAR model matches the order of the figures in each
block of six, reading left to right, then top to bottom. Dashed lines show 95 percent bootstrap
confidence intervals. The horizontal time axis is in months.
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Figure 15: This figure shows the cumulative return of long-short portfolios formed using different
news-based sorts. The long and short side of each portfolio contain the fraction f of all names for
which returns are available in a given month. Data are monthly. Also shown are the arithmetic
average monthly return on an annualized basis, as well as annualized return volatility (assuming
uncorrelated monthly returns), and the annualized Sharpe ratio of each strategy. The sentiment
sort SENT and its entropy interacted version ENTSENT are shown side by side. The four
sorts are described in Section 6.
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Figure 16: This figure shows impulse response functions in the model of Section 7. The response
is hump-shaped for small κ (a tight information constraint) and monotonically decreasing for
large κ. The other parameters are ρ = 0.85, λ = 0, and a = 1.
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