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Abstract

We extract from the yield curve a new measure of fundamental economic uncertainty, based
on McDiarmid’s distance and related methods for optimal uncertainty quantification (OUQ).
OUQ seeks analytical bounds on a system’s behavior, even where the underlying data-generating
process and system response function are incompletely specified. We use OUQ to stress test
a simple fixed-income portfolio, certifying its safety—i.e., that potential losses will be “small”
in an appropriate sense. The results give explicit tradeoffs between: scenario count, maximum
loss, test horizon, and confidence level. Unfortunately, uncertainty peaks in late 2008, weakening
certification assurances just when they are needed most.
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1 Introduction

This paper extracts a new measure of fundamental economic uncertainty, based on McDiarmid’s distance,
from the Treasury yield curve. McDiarmid’s distance is a centerpiece of a set of methods for optimal
uncertainty quantification (OUQ) recently developed by the engineering community. The OUQ approach
seeks analytical bounds on a system’s behavior, even where the underlying data-generating process and
system response function are not fully specified. We adapt the methods to the problem of stress testing
financial portfolios.

Uncertainty plays an important role in economics and finance, where the term traditionally refers to the
statistically unmeasurable situation of Knightian uncertainty, where the event space is known but probabil-
ities are not [18]. Full ignorance of the underlying probability structure is often an unrealistically extreme
assumption, however. Uncertainty quantification originated in the engineering domain, which requires pre-
cise assurances about the probability of system failures, such as an airplane crash or bridge collapse, despite
partial ignorance or ambiguity about the data-generating process. In engineered systems, failure events for
the individual component parts can be rendered statistically independent by physically segregating the com-
ponents. The probability of overall system failure then becomes an intricate, but straightforward, structured
calculation of Bernoulli probabilities of subsystem and component failures.1

OUQ, described in Section 2.2, generalizes the approach to a broad class of problems in this middle
ground, where the full probability law remains unknown, but can nonetheless be constrained in important
ways.2 OUQ requires that the system have a bounded response to each element in a collection of exogenous
forcing factors. For example, in the context of a bond portfolio, McDiarmid’s distance reveals the possible
variation of portfolio losses (system response) resulting from a given set of interest-rate shock scenarios (in-
put impulses). In addition, OUQ requires that the exogenous forcing factors be statistically independent.
With these assumptions, the McDiarmid mathematics of concentration of measure optimally aggregate the
individual bounds to produce a quantitative upper bound on the overall likelihood of extreme outcomes.
Intuitively, the bounds define univariate worst-case scenarios for the response function, while the indepen-
dence assumption implies that it is improbable that multiple factors will achieve their worst case bounds
simultaneously.

As a stress-testing exercise, OUQ techniques allow one to “certify” portfolio soundness. More specifically,
certification means asserting, with a specific confidence level, that a particular real-valued response function—
the quantity of interest—will not exceed a predefined safety threshold. For example, a portfolio manager
might wish to assert to clients that a drawdown during the next 12 months exceeding 25 percent of the
portfolio’s current market value will occur with at most a 0.1 percent probability. OUQ is a toolkit for
supporting such certifications.

As described in Section 2, uncertainty played a key role in the recent rise to prominence of financial
stress testing, especially as a supervisory exercise. Nonetheless, stress testing still lacks a rigorous theoretical
foundation. Such an overarching framework could help identify shortcomings in current practice and help
guide new policy and implementation choices. Financial stress testing instead has evolved as a practical
technique for addressing the important problem of rare but severe events that can overwhelm individual
financial firms and entire financial systems. This is inherently a modeling exercise, because it involves
assessing the behavior of the system when extrapolated to the unusual counterfactual conditions defined by
the stress scenario(s). Done carefully, stress testing can also act as a technical audit, revealing shortcomings
in the design and implementation of risk models. It can also deliver an attribution analysis identifying the
segments of a large portfolio most vulnerable to particular stressors.

We illustrate the use of OUQ in the case of a simple but realistic portfolio of Treasury bonds. The
example demonstrates the basic feasibility of uncertainty quantification in a financial context. An important
qualifier is the tightness of the bounds one can assert regarding portfolio response. Although these bounds

1For an example of the procedure, see the fault tree analysis in the ARP4761 airline safety standard [48, appendix
D]. The maximum acceptable probability [44] of a catastrophic event per flight hour in civil aviation is 10−9.

2For a simple example of a constraint, one might know the mean of a distribution from the law of large numbers,
but not its variance or any other moments. Owhadi et al. [44] work through an illustration in which knowledge of
the mean constrains the set of admissible scenarios in a certification exercise.
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may seem quite loose (100 percent loss of principal), we show that OUQ techniques generate significant
gains in certification confidence over the more familiar approach of Chebychev’s inequality, which uses an
assumption of finite variance to bound uncertainty.

For good or ill, economic uncertainty varies over time. By our measure, uncertainty tends to peak
during late 2008, just when certification was needed most. In particular, our calculated McDiarmid’s distance
achieves its maximum at the end of 2008, when the financial crisis was most urgent. This correlation between
uncertainty and crisis is unsurprising, but nonetheless symptomatic of a fundamental tension for financial
stress testing, because increases in uncertainty reduce the strength of possible certifications.

2 Quantifying uncertainty

This section begins with a discussion of the case of financial stress testing, where certification has played a
prominent role. Section 2.2 then describes the OUQ approach in greater detail.

2.1 Stress testing as certification

In the depths of the recent financial crisis, investors’ uncertainty about asset quality drove surviving banks’
stock-market valuations unrelentingly lower. Regulators responded with the emergency Supervisory Capital
Assessment Program (SCAP) to staunch the crisis of confidence driven by this fundamental uncertainty.3 In
the words of Federal Reserve Chairman Bernanke [6],

“In retrospect, the SCAP stands out for me as one of the critical turning points in the financial
crisis. It provided anxious investors with something they craved: credible information about
prospective losses at banks. Supervisors’ public disclosure of the stress test results helped restore
confidence in the banking system and enabled its successful recapitalization.”

In short, the Federal Reserve sought to certify the “safety” of large bank holding companies under stressful
conditions.4 Although it was unprecedented in many ways, the SCAP largely succeeded, and it laid the
foundation for the evolving program of stress testing as a centerpiece of banking supervision.

The perceived success of the SCAP during the financial crisis, renewed an emphasis on financial stress
testing, which now has a central role in official supervision and industry practice. In banking, the Com-
prehensive Capital Analysis and Review (CCAR) and Dodd-Frank Act Stress Testing (DFAST) processes
have superseded the 2009 SCAP in the United States, while the European Banking Authority has simi-
larly instituted annual European Union-wide stress testing. These regulatory stress tests have wide-ranging
implications for capital requirements and other supervisory policies. The European Insurance and Occupa-
tional Pensions Authority is currently implementing the new Solvency II stress testing process for insurance
companies. For many years, the International Monetary Fund has applied its Financial Sector Assessment
Programs (FSAPs) to a broad gamut of financial activities in other countries.5

In finance, the general class of certification problems is familiar from the widespread use of value-at-risk
(VaR) in market risk analyses by practitioners and regulators; [5], [35]. A VaR analysis ordinarily starts
by fixing a confidence level—the VaR α—and then works backward to estimate a safety threshold that
just satisfies the confidence level. High-frequency, low-dimensionality data characterize much of modern

3Banking supervisors announced their intention to perform the SCAP stress test in February 2009 [11]. They
published the SCAP results in May 2009 [9], which included calls for new capital injections for 10 of the 19 bank
holding companies tested. See also Hirtle et al. [32] and Tarullo [49].

4A contemporaneous proposed statement of policy [10, p. 2] similarly noted that, “... these stress tests provided
valuable information to market participants, reduced uncertainty about the financial condition of the participating
bank holding companies under a scenario that was more adverse than that which was anticipated to occur at the
time, and had an overall stabilizing effect.”

5For an overview of the current state of supervisory stress testing, see Foglia [25] and Bookstaber et al. [12]. The
latter also offer suggestions for a research agenda. Blaschke et al. [7] describe the FSAP methodology. Pattison [45]
and Flood et al. [24] discuss the increasing reliance on data-driven methods generally in financial supervision.
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risk management, creating a situation that invites such traditional statistical approaches. Even in efficient
and liquid markets, however, simple Gaussian (or other stable, finite-variance) data-generating processes are
typically inadequate to describe the data fully. The most fundamental difference between the VaR and OUQ
approaches, however, is that VaR implementations require the assertion of a known statistical distribution as
the driver of risk. OUQ similarly requires there be some reliable probability law that governs the data, but
does not require that we know what that distribution is. Nonetheless, under certain general restrictions, we
are able to derive precise confidence bounds on the likelihood of certain events, such as an asset drawdown
in excess of available capital.

Stress testing contrasts with VaR, which collapses hazard (the contingent scenario), risk (probability of
event occurrence), and impact (resulting change in a portfolio’s value or other quantity of interest) into a
single reduced-form risk measure. Stress testing, on the other hand, disentangles hazard, risk, and impact
by removing risk from the problem and focusing directly on the possible impact of a scenario occurrence.
Nonetheless, there remains an inherent tension between the severity of shocks and their likelihood of happen-
ing. Outlandish scenarios will face opposition. This trade-off is especially likely to operate when there are few
scenarios and real resources are at stake (for example, in capital requirements). Supervisors acknowledged
this problem early in the history of regulatory stress testing. For example, the 1996 Market Risk Amend-
ment to the original Basel Accord notes “banks’ stress tests should be both of a quantitative and qualitative
nature, incorporating both market risk and liquidity aspects of market disturbances. Quantitative criteria
should identify plausible stress scenarios to which banks could be exposed” [4, p. 46]. Similarly, by 2001,
the International Monetary Fund had established formal process for their FSAPs, relying on “exceptional,
but plausible” events [7].

We formalize the notion of financial stress testing as an exercise in certification and explore the implica-
tions of this perspective. Certification is the problem of asserting that a particular system response function
will not, with probability at least 1− ε, exceed a particular safety threshold, α:

P {G(X) ≥ α} ≤ ε.

The function G represents a system response (or “quantity of interest” [42]), the event G(X) ≥ α denotes
a particular form of system failure, such as a bank failure or a portfolio credit loss exceeding a predefined
risk tolerance, and P is a probability measure governing the data-generating process for the vector of input
variables X. The practical challenge is that neither G nor P is usually fully known in advance.6 The
vulnerability profile of a portfolio, defined by G, can evolve quickly, especially in institutions with a large
trading book. Moreover, the process emitting economic hazards, captured by P, is typically punctuated by
extreme events in a high-dimensional space. A stress event might be a terror attack, a currency crisis, or a
default by a large counterparty.

Lacking a calculus to address directly the twin challenges posed by imperfect knowledge of G and
P, regulators and industry risk managers have resorted to two practical expedients. First, the response
function, G, is emulated by an elaborate modeling process involving a mixture of vendor-supplied valuation
and risk analytics software packages and bespoke calculation engines at the tested firms and their regulators.
Second, the theoretically measurable data-generating process, P, is replaced by a set of hand-picked scenarios,
x1, ..., xn. The implementation burden here is large, and the scenario budget correspondingly small. For the
CCAR exercises, the number of scenarios is n = 2. We do not address the practical concerns of emulation
analytics and scenario selection, but explore instead the possibility of formal uncertainty quantification,
applying techniques from the engineering literature.

2.2 Optimal uncertainty quantification (OUQ)

Uncertainty quantification addresses the important practical problems that lie between traditional statistical
analyses in which the risks are presumed to have measurable likelihoods, and the probability-free world of

6Glasserman and Xu [26] adopt an alternative approach to the imperfect knowledge of G and P, treating this as
a problem of model risk and robust control [31] and applying techniques of relative entropy to measure and bound
possible model errors.
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pure scenario analysis. Actuarial data on system failures are often unavailable, regardless of the industry.7

Nonetheless, probabilistic assessments of failure are a key input to important decisions, such as whether to fly
the plane or close the bank. Uncertainty quantification leverages available information to derive probabilistic
constraints on a quantity of interest that summarizes some key aspect of the system; [42].

Two recent papers in this literature ([39] and [44]) develop a general framework for uncertainty quantifi-
cation that focuses on the assumptions and information sets that underlie such constraints. A key goal is to
fully exploit available information, while avoiding inappropriate assumptions. A similar and more familiar
result is Chebychev’s inequality (16), which requires only that the data-generating process have finite mean
and variance. In the example derived in Section 3, we demonstrate the performance improvement provided
by OUQ in comparison to Chebychev.

The OUQ framework makes central use of the probability inequalities of Hoeffding [33] and related results
on concentration of measure first explored by McDiarmid [40, 41].8 McDiarmid’s inequality (see equation
(19)) requires two important constraints on the problem:

• The (perhaps unknown) inputs, X, to the certification problem in equation (1) must be statistically
independent.

• The component-wise oscillations of the output function, G(X), must have a finite diameter. That is,
the largest absolute deviation in G(X) for any isolated change in a single element of X must have a
finite upper bound.

These requirements impose non-trivial restrictions in many applications, but they are much less restrictive
than most alternative approaches. The basic intuition for the concentration-of-measure approach is that it
is difficult for independent inputs to “conspire” to produce a worst-case outcome that would require them
all to achieve their extreme (bad) values simultaneously.

OUQ traditionally focuses on mechanical rather than social systems. The presence of humans in the loop
can sharply limit the applicability of OUQ, especially if the human actors have ulterior or adversarial motives
and the capacity to act strategically [42]. We return to this limitation in the conclusions below. Although
strategic actors play key roles in most financial institutions and markets, computer models and networks also
represent important, large, and growing subsystems within the overall financial system. Examples include
quantitative hedge fund strategies, algorithmic and high-frequency trading, clearinghouses and payment
networks, and custom risk and pricing analytics. When isolated, these mechanical components are typically
well suited to OUQ approaches.

To explore the possible benefits of the OUQ framework for financial stress testing, we apply it to the
special case of a fixed-income portfolio of government bonds, where the source of risk, X, is taken to be
fluctuations in the Treasury yield curve. The goal is to demonstrate the applicability of an OUQ approach
to certification in a financial context and to illustrate its potential benefits in terms of uncertainty reduction.
To our knowledge, this is the first application of the OUQ framework to a financial problem. Yield curve
dynamics lack the high-dimensional challenges that confront a full-blown stress test of a large, complex
financial institution. Indeed, we are able to use standard principal-component techniques to reduce the
problem to a two-dimensional response function. Nonetheless, the example is sufficiently realistic for an
initial appraisal of OUQ for financial stress testing.

3 Quantifying uncertainty for the Treasury yield curve

3.1 Framing the problem

Despite the potential for stress testing to add more formal structure to the analysis of financial vulnerabilities,
practical implementations require a variety of non-trivial assumptions and choices, each of which should be

7The Operational Riskdata eXchange (ORX) [43] for financial institutions is an exception, accumulating data on
common operational events.

8For additional background on concentration inequalities, see Ledoux [36] and Boucheron et al. [13].
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carefully grounded. Financial stress testing practice has advanced quickly, evolving largely through ad-
hoc supervisory and practitioner expedients. We argue that financial stress testing will benefit from an
overarching theoretical framework to help guide implementation choices more deliberately. The theoretical
foundations of stress testing are still being laid, and we hope to frame an understanding of these questions
by working through the application of OUQ certification techniques in a financial context.

As discussed in Section 2, one important goal of supervisory stress tests is to ensure key financial
institutions suffer manageable losses by testing whether those firms have sufficient capital to absorb even
extraordinary negative shocks. In other words, supervisors would like to certify that an institution is “safe,”
based on a scenario analysis of balance sheet responses to a range of shocks. We formalize the problem
by first assuming that there is a D-dimensional source, X, of risk factors that drive changes in the value
of a portfolio, such as a loan book or a full bank balance sheet. The random variable X has an unknown
distribution µ. There is a loss function L : RD → R representing the portfolio’s response to an impulse from
the risk source, and we want to compute:

`
def
= E[L(X)]

def
=

x∈R
L(x)µ(dx).

∫
(1)

ˆor { ˆ ˆTo test the portfolio, a risk officer regulator submits scenarios X1, X2 . . . XN} to the financial institution,
ˆ ˆ ˆand the institution computes {L(X1), L(X2) . . . L(XN )} as well as the empirical average loss:9

`eN
def
=

1

N
n=1

L(X̂n).
N∑

(2)

The portfolio manager and the stress tester agree on the structural assumptions of D sources of risk and on
the loss function L.

One challenge in stress testing applications is controlling the size of N .This is important in practice,
because scenario analysis is typically costly, and regime shifts or data availability may limit the applicability

ˆof the model that estimates L(Xi) to a certain time interval; there may be only a finite amount of relevant
historical data.10 A strength of the OUQ framework [44] is that it allows for a finite number of scenarios.
Alternately, scenario analysis may be cursed by high dimensionality, making it difficult to construct inter-
nally consistent scenarios covering all dimensions simultaneously; [23]. When stress testing a full financial
institution, as in the DFAST and CCAR processes, large operational costs of analyzing each scenario effec-
tively impose a scenario budget. In all these case, techniques that make optimal use of a limited number of
scenarios should achieve a more reliable final analysis.

3.2 A model of the yield curve

To further simplify the example, we decompose the yield curve dynamics into a combination of latent factors.
The empirical dynamics of Treasury yields have been heavily studied elsewhere (e.g., [14], [16], [17], [22],
[30], [37], [21], [19], [46]), allowing for a relatively clear delineation of the information sets—the knowns
and unknowns—supporting the analysis. The standard decomposition uses principal components analysis
(PCA) to extract three sources of randomness, typically labeled as the short-term interest rate (short rate),
the long rate, and the curvature of the term structure [38]. Alexander [1] provides a detailed example of the
PCA procedure. This decomposition identifies the statistical factors present in the cross section of yields
at various maturities. Duffee [20] establishes, theoretically and empirically, that the data-generating process
can also embed “hidden” factors that help drive the intertemporal dynamics of the term structure, but
that are not detectable in the cross-section alone. We work here exclusively with the factors revealed by

9One might also compute a number of alternative statistics, such as the expected maximum loss over a horizon or
the probability that the loss exceeds a certain level; the calculations would be similar.

10Glasserman et al. [27, Sections 7 and 8] discuss techniques for optimal use of conditioning information to identify
internally coherent stress scenarios in the multidimensional tail.
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the cross-section of yields under an assumption that the data-generating process remains stable over short
intervals.11

It is commonplace for the standard cross-sectional decomposition to explain the vast majority of the
variation in rates along the yield curve.12 There are other important approaches to dimensionality reduction
and modeling of yield curve dynamics, including affine, no-arbitrage models focused on pricing applications
[22] [46], and the dynamic Nelson-Siegel model [16] (Diebold and Rudebusch [17] provide an excellent overview
of this literature). We opt for the traditional PCA decomposition, because the orthogonality structure it
imposes on the factors provides the foundation for the extraction of fully independent factors—i.e., not
merely uncorrelated—described next.

The goal at this stage is to isolate a set of risk factors, Xt, that are low dimensional (for tractability)
and statistically independent (a requirement of the OUQ mathematics), while still capturing almost all the
variation in the yield curve. This will allow us, in the portfolio analysis in Section 4 below, to treat the loss
function as responding directly to a small set of impulses, Xt, satisfying the independence requirements of
the OUQ approach. We begin by applying PCA to extract orthogonal (not yet independent) factors that
approximate the full yield curve. Defining the change in value—i.e., profit or loss—for a single bond, with
annual maturity m ∈ {1, 2 . . . 30} and a par value of $1 as:

ξm(t) = {e(yt(m)−yt+1(m))m − 1}, (3)

The statistical behavior of the yield curve thus follows the RM -valued stochastic process {ξ(t)}Tt=1 where the
vector of individual bond value fluctuations at time t is given by:

ξ(t) =

ξ1(t)
ξ2(t)

...
ξ30(t)


 

(4)

Let Σe be the empirical covariance matrix of ξ. We build a PCA projection operator that isolates the
dominant fluctuations of ξ. Let E be an orthonormal matrix that we can rotate so its columns, en, are the
eigenvectors of Σe. Then:

ETΣeE = diag(λ1, λ2 . . . λ30) (5)

where λ1 ≥ λ2 . . . λ30 ≥ 0. For our limited sample, the first three principal components are indeed adequate:∑3
j=1 λj∑30
j=1 λj

= 99.9977;

As expected, the overwhelming majority of the cross-sectional covariance of the yield curve is captured by
fluctuations in the direction of the first three eigenvectors of Σe. Figure 1 plots the first three eigenvectors
of the covariance matrix. Note that the eigenvectors here are based on the covariance of prices over time,
not yields. This is a departure from typical practice in the literature. For purposes of stress testing, we are
most interested not in fluctuations in the yield curve itself, but rather in the dollar value of our portfolio.

More specifically, write the eigenvectors of Σe as the columns of E:

E = e1 e2 . . . e30

[ ]
11A comparison of our OUQ-based uncertainty measure with Duffee’s [20] hidden factor(s) is an interesting question

for future research.
12For example, Alexander [1, p. 56], shows that the first three principal components from the correlation matrix

of daily spot rates for U.K. government debt account for over 99 percent of total variation. Intuitively, there is a
great deal of common variation across the various tenors in the term structure, because bonds of nearby maturities
are close economic substitutes whose comovement is encouraged by arbitrage.
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Figure 1: First Three Eigenvectors of the Covariance Matrix

so that the en sequence forms an orthornormal set in R30 and such that Σeem = λmem. This implies that
we can approximate the vector of changes in bond values, ξ(t), as the combination of the empirical level and
variation around it:

3

ξ(t) ≈ ξ̃(t)
def
= ξ̄e +

∑
j=1

ejX
(j)
t (6)

¯where the vector ξe is the empirical average of ξ (i.e., each component, ξm, is the empirical average of the
(j)

price of the bonds with maturity m), and where the jth risk factor, Xt , projects onto the vector of bond
value fluctuations via the jth eigenvector:13

X
(j)
t

def
= eTj ξ(t) (7)

This formulation captures an optimal three-dimensional approximation of ξ. The empirical covariance matrix
(1) (2) (3)

of (Xt , Xt , Xt ) is the matrix λ1 0 0
0 λ2 0
0 0 λ3

 ; (8)

This implies that the X(j) factors are uncorrelated. In Section 3.3, we further reduce this system to two
dimensions, in preparation for the portfolio analysis in Section 4.

Collecting results: (a) there is a fixed and known matrix Σe that leads to the ej vectors; and (b) there is
a vector-valued time series X, where {X } is an i.i.d. (over time) collection of R3

t t∈N -valued random variables
with multivariate distribution (i.e., common probability law), µ. While the components of X are orthogonal
by construction, µ does not necessarily describe three independent R-valued random variables. For example,
there might be tail dependencies or other conditional relationships between the factors that a simple linear
correlation measure does not capture.

3.3 Deriving independent risk factors

Our main insight is to use historical data to get a better understanding of the probability law µ governing
the risk factors, X(j). Through the principal components derivation, the covariance structure (8) implies
that the X(j)s are uncorrelated, but this is inadequate; we require statistical independence. That is, we want

13Because E is orthonormal, its inverse and transpose are equal: E−1 = ET .

9



to write the X(j)s as (nonlinear) functions of independently distributed random variables. The full nature
of these nonlinear functions is unimportant for our purposes; we only need the bounds on the response.

We start by reducing the problem from three to two risk dimensions, namely the first two eigenvectors
from the PCA derivation (5). The motivation for this is largely aesthetic, to avoid an explosion of notation in
iterating the derivation to cover the third risk factor, as this would distract attention from the basic intuition
for the process. However, the dimensionality reduction is further justified in the special case of our data by
the fact that the remaining two principal components still account for the vast majority of the variation in
the sample. We calculate that ∑2

j=1 λj∑30
j=1 λj

= 99.9733.

That is, the first two principal components explain more than 99.9 percent of the total variance. This, of
course, will not be true in general.14

The next step is to derive independent risk factors from the uncorrelated factors, {X(1), X(2)}. Assume
that {U1, U2} are two independent uniform (0, 1) random variables. Let F1 be the first marginal of µ; i.e.,
the probability law of X(1). In other words, we map the first principal component to U1 by inverting the
cumulative distribution of X(1):

F1(s)
def
= µ ((−∞, s]× R) .

Define
ζ1

def
= F−11 (U1),

where F−11 is the right-continuous inverse. Then

P{ζ1 ≤ X(1)} = P{U1 ≤ F1(X(1))} = F1(X(1))

so that ζ1 has the same statistics (i.e., the law) as X(1). Next let F2,x be the conditional cumulative
distribution function of X(2), given that X(1) = x. That is,

P{X(2) ≤ t2|X(1)} = F2,X(1)(t2).

Define now
ζ2 = F−12,ζ1

(U2);

and then apply the inverse cumulative functions to establish the equivalence in probability between the
(j)

orthogonal factors, Xt , and the independent factors, ζj :

P{ζ1 ≤ t1, ζ2 ≤ t2} = E P{ζ2 ≤ t2|ζ1}1{ζ1≤t1} = E P{U2 ≤ F2,ζ1(t2)|ζ1}1{ζ1≤t1}
= E

[
F2,ζ1(t2)1{ζ1≤t1}

]
= E

[
F2,X(1)(t2)1{X(1)≤t1}

]
= E

[
P{X(2) ≤ t2|X(1)}1{X(1)≤t1}

]
= P{X(2) ≤ t2, X(1) ≤ t1}

[ ] [ ]

where 1A is the indicator function for event A. We can (statistically) replace the PCA approximation in (6)
with a restatement in terms of independent factors, as required by OUQ:

P̃
def
= P̄ + c1F

−1
1 (U1) + c2F

−1
2,F−1

1 (U1)
(U2); (9)

essentially, we have written out a representation using Sklar’s theorem of a copula for (X(1), X(2)) (see [47]).

14This exercise is usually undertaken with yields, rather than bond prices. Alexander [1, example II.2.1] applies
PCA to the U.K. Treasury yield curve, for which the first two principal components explain 97.99 percent of the
variance, and later [2] extends the analysis to a stress-testing context. Similarly, when we apply PCA to the daily
bond returns in our laddered portfolio (i.e., not the Treasury yield curve itself, but the exponential function given by
(3), we find that, once again, the first two components explain more than 99.9 percent of the total variation (more
precisely, 99.9390 percent).
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Figure 2: Autocorrelation of first and second components

Our primary goal is to introduce the OUQ methodology in the context of interest rates as a source
of portfolio risk, and not to explore all the possible ramifications of this approach. Although we note, in
passing, that the first two factors have autocorrelation of about 0.2 for various lags (see Figure 2), we do
not assume temporal independence of the samples. Temporal dependence affects the rate at which the law
of (ζ1, ζ2) is established from the empirical data. The possible implications of temporal (in)dependence are
questions for future research. We do assume that the data-generating process remains stable within our
six-month estimation windows.

3.4 Estimating the joint density

Equation (9) refactors the source of risk as a combination of two independent components. The next step
is to calibrate this structure against the Treasury yield data. That is, we must empirically approximate
the joint probability law of (ζ1, ζ2). Assume that this pair of random variables has a stable joint density
f(ζ1, ζ2). Given this and our data sample as a starting point, we seek the smoothest density that matches
up with the empirical cumulative distribution function.

Specifically, consider the optimization problem

inf

∫
R2

|∇f̃(x, y)|2dxdy : f̃ ≥ 0,

∫
R2

1Aij
(x)f̃(x)dx = FX,Y (xi, yj) ,

{ }
(10)

where xi and yi are the first two principal components given by the PCA derivation and Aij = {(x, y) : x ≤
˜ ˜xi, y ≤ yj}. Write f for the smoothest density that fits the empirical data; in other words, f is a density that

matches the empirical observations and has the smallest gradient. This data-fitting problem is within the
framework of calculus of variations (CV). We convert the CV problem into a standard quadratic program
(QP) by applying a direct discretization method.

The first step in the QP approach is to choose a region D defined by boundary points x, x, y and y and
constrain the density so that

f̃(x, y) = 0, ∀(x, y) ∈ Dc,

where D = {(x, y) : x ≤ x ≤ x; y ≤ y ≤ y} and Dc is its complement. In other words, this truncates the
infinite horizon problem to the finite region D = [x, x]× [y, y]. Let X and Y represent the sets of x and y,
respectively. Arrange the elements in X and Y in an increasing order. Then for each point (x, y) ∈ X × Y ,
there are two associated indices i and j indicating the order of x in X and y in Y . Let I and J be the sets
of indices. For i ∈ I and j ∈ J , partition the region D as

h+xi
= xi+1 − xi, h−xi

= xi − xi−1, h+yj = yj+1 − yj , h−yj = yj − yj−1,

11



where xi = 0 if i ∈/ I and yj = 0 if j ∈/ J . In other words, this converts the rectangle D into an inhomogeneous
grid of smaller rectangles with size hxi × hyj .

Given the partition of D, we use the central finite difference method to approximate the gradient in the
objective. Namely,

f̃x(xi, yj) = (f̃(xi+1, yj)− f̃(xi−1, yj))/(h
+
xi

+ h−xi
), f̃y(xi, yj) = (f̃(xi, yj+1)− f̃(xi, yj−1))/(h+yi + h−yi)

Hence, the objective function is a quadratic function of the decision variables f(xi, yj), i ∈ I, j ∈ J . In
addition, the Hessian is a symmetric diagonally dominant matrix with positive diagonal entries, implying
that it is positive semidefinite, according to Gershgorin’s circle theorem. The convexity guarantees that
any local optimal solution is also globally optimal. We can transform the integral constraints into a set
of linear constraints by approximating an integral constraint as a sum of the products of certain decision

f(xi,yj)+f(xi+1,yj)+f(x ,y )+f(x ,y )
variable average (e.g., i j+1 i+1 j+1 ) and the area of the corresponding grid Aij4
(e.g., (xi+1−xi)× (yj+1− yj)). At this point, we have re-formulated the original CV problem into a convex
QP problem so that any local solution is also globally optimal.

Figure 3: Joint Density Plot for the First and Second Principal Components

With this, standard optimization software will efficiently identify the optimal solution to (10), i.e., the
smoothest joint density function. We use the Knitro Solver in the Tomlab platform [34] to estimate the
joint density function of the two components numerically by solving the convex QP given by (10). Our
calibration sample is the first two principal components of the 30-dimensional returns series for the laddered
portfolio, as described in Section 3.2.15 Figure 3 depicts the results, shown from two perspectives for clarity.
As expected, the bulk of the variation occurs in the first principal component. We can now integrate the
calibrated joint density function to calculate the cumulative density function and the inverse conditional
cumulative function.

4 A worked example of OUQ for a fixed-income portfolio

4.1 A laddered Treasuries portfolio

We apply the methodology to the specific example of a laddered portfolio of 30 U.S. Treasury securities
(bills, notes, and bonds). It is helpful to start with a relatively simple portfolio as an initial proving ground
for OUQ methods in a financial context. The absence of credit risk, for example, enables an exposition of
the basic techniques without some of the elaborate complications that would be necessary for a more general

15The computational time is 121.7 seconds to find the global optimal solution on a Scientific Linux 6.4 operating
system with a duo-core 3.10GHz processor.
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portfolio. The implementation of this specific example illustrates the methodology and highlights the key
assumptions it requires. The example provides important lessons and guidance for a more complete exercise
as a topic for future research.

The starting point for the analysis is a hypothetical laddered portfolio of 30 U.S. Treasury instruments
(bills, notes, and bonds) of different annual maturities, indexed by m ∈ {1, 2 . . . 30} , corresponding to
constant maturities of 1 year, 2 years, and so forth. The portfolio is rebalanced each day to start with 1
unit (the total capital), invested in equal shares of $1/30 for each maturity. For simplicity, we assume the
portfolio operates on a scale sufficiently small that its impact on market prices is negligible.16 To estimate
risk-factor dynamics, we use the daily, constant-maturity Treasury yield series of Gurk¨ aynak et al. [28],
interpolated from daily, off-the-run Treasury prices [29]. We use data for T = 100 days in our example, from
March 04, 2013 to July 24, 2013.

We normalize the calculations by assuming that each bond has par value of $1.17 Assuming continuous
compounding, the price in dollars of the m-year bond is:

Pt(m) = e−yt(m)m

With an equally weighted investment of $1/30, the portfolio manager can buy:

1/30

Pt(m)
=

1

30
eyt(m)m

bonds at the start of day t, to be sold (or rebalanced) one day later at price Pt+1(m), paying off an amount
(in dollars):

1

30
eyt(m)mPt+1(m) =

1

30
e(yt(m)−yt+1(m))m.

Defining the change in value for a single bond (with par value of $1) as in Equation (3), the profit (or loss)
on an individual bond m in the portfolio is 1 ξm(t). Summing the effects across the portfolio, the total profit30
for day t is

P
def
=

1

30

30∑
m=1

ξm(t). (11)

The statistical behavior of the portfolio—the vector of bond-by-bond profits and losses at time t—follows
the same RM -valued stochastic process given in (4). The crux of the OUQ analysis lies in addressing what is
known and unknown about this process. A basic goal is to certify portfolio safety with tighter probabilistic
bounds than those available with more traditional techniques, such as Chebychev’s inequality. Less powerful
methodologies require more test observations to achieve the same level of assurance.

4.2 Portfolio loss

The next step is to construct a loss (or negative profit) function. This loss is the primary quantity of interest
in the stress test, and we treat it as a response function driven by the risk factors. Clearly, the loss is the
positive part of −P . In particular, we are interested in carefully bounding the expected loss:∫

`
def
=

x∈R2

L(x)µ(dx).

16The assumption that the market is a fully exogenous forcing function is typical in microprudential stress testing.
It is also a weakness of the current procedure. Bookstaber et al. [12] propose that stress testing should move to a
“version 3.0” that explicitly considers feedback effects. Such a shift would effectively expand the scope of analysis
from firm level to full financial system or subsystem.

17Given our standing assumption that market price fluctuations are exogenous, this is an inconsequential rescaling
to simplify the notation. If, instead, the activities of the portfolio could have non-negligible impact on market prices,
this rescaling assumption would require additional analysis.
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where L is given by equation (13) and where µ ∈ P(R2) is the probability law governing the risk factors,
˜Xt, given by equation (7). We already have coarse bounds on P via knowledge of Σe and Chebychev’s

inequality, together with loss caps at either the position level (14), or at the portfolio level (15). However,
OUQ provides a tool, McDiarmid’s inequality (19), that uses these loss caps to achieve even tighter control

˜on the structure of P , and is a more reliable certification of portfolio safety.
Section 3 derived the cumulative functions for the risk factors, Xt, as two independent random variables,

as in equation (9). Independence of the risk sources is one of the key requirements for application of the OUQ
techniques. In addition, there is a boundedness requirement that the response (i.e., portfolio loss) be finite.
The concentration inequalities discussed in Section 4.3 require this. In principle, regulations such as line-of-
business restrictions, bans on short holdings and naked options, etc., could provide an additional bound on
overall exposure, but it is ultimately the actual portfolio holdings that matter, rather than official strictures,
because the latter may or may not be obeyed, particularly by an institution under stress. We emphasize that
the laddered portfolio in our example meets the restriction by construction. The portfolio rebalances daily
to strictly positive holdings, and the maximum daily loss cannot exceed the initial daily principal stake. This
boundedness may not hold for arbitrary asset portfolios. At the firm level, shareholder losses are bounded
by the limited liability of equity stakes, but overall loss exposures can extend to a total loss of assets—or
more, for example, if the asset portfolio embeds large short positions or written put options.18

From equation (6) and (11), profit (or loss) is a function of the risk factors:

P̃
def
= P̄ +

2∑
j=1

cjX
(j)
t (12)

¯where, recalling that the portfolio is rebalanced daily to hold equal $1 stakes at each maturity, P is the
average (across all bonds held) profit or loss for the portfolio:19

P̄
def
=

1

30
〈1, ξe〉R30

and, similarly, cj is the average across all 30 elements of the jth eigenvector:

cj
def
=

1

30
〈1, ej〉R30

If K is the ceiling on losses, then from equation (12) and for x = (x(1), x(2)) ∈ R2:

L(x)
def
= −P̄ +

2∑
j=1

cjx
(j)


+

∧K def
= min

(
max

(
−P̃ , 0

)
,K
)  

(13)

The bounds should have several features. The loss of the portfolio should be between the bounds;
otherwise, the position would not be established in the first place. Standard deviations are typically the first
line of defense in controlling losses; portfolios are often immunized against losses within several standard
deviations. Losses are typically stopped (i.e., bounded) several standard deviations away from the mean. The
challenge then becomes an issue of tails: how can the loss be distributed within a large range while having
controlled standard deviation? The loss might, for example, take on the extreme values near the bounds,
but with very small probability. This highlights an important benefit of scenario testing—consideration of
historical or synthetic scenarios in the risk factors can help explore the distribution of portfolio losses by
mapping out the response function.

18Cherny and Madan [15] explore the implications of arbitrary portfolio holdings, and derive formal restrictions on
acceptability.

191 is identically the vector of 1s in R30, so the inner product 〈1, ξe〉R30 is the sum of the components of ξe across
all maturities.
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Given that a typical portfolio comprises a basket of investments, there are alternate ways to enforce
bounds. For example, instead of capping losses at the level of the portfolio, one might stop losses at the level
of individual holdings; that is, require that

(j)
Xt ≥ −kj (14)

for all t and all j ∈ {1, 2}. In other words, impose either a hedge or risk constraint that require X(j) to lose
no more than cj . This implies that

P̃ ≥ P̄ −
2∑
j=1

cjkj (15)

and

max{−P, 0} ≤ P̄ +
2∑
j=1

cjkj .

Note that this does not conversely imply equation (14). The OUQ estimates that we develop below depend
on the rule(s) for imposing bounds on losses. More generally, the granularity of risk bounds—for example,
instrument level versus portfolio level—has an effect on the certifiability of a portfolio. Although we do not
pursue this direction, the calculations suggest there is an optimal way in terms of certifiability to enforce
risk bounds. For a given level of uncertainty, what is the most lenient combination of instrument-level and
portfolio-level bounds that will admit certification?

4.3 Concentration inequalities

We have framed the analysis of stress testing in the language of concentration inequalities, like Chebychev’s
familiar inequality,

P(|X − µ| ≥ kσ) ≤ 1

k2
(16)

which assert a measurable likelihood that observations will fall within a specified range. Concentration
inequalities give statistical bounds on the difference between a random variable and its mean. These in-
equalities work by placing various bounds on the fluctuations on the random variable (for example, the hard
cap on daily losses in our laddered portfolio). Concentration inequalities typically also exploit an assump-
tion of statistical independence of stochastic inputs and can be used to give bounds on sums, as in the law
of large numbers. In our example, we are able to refactor yield curve risk into a D-dimensional vector of
independent components, allowing us to apply McDiarmid’s inequality. This approach follows Lucas et al.
[39] and Owhadi et al. [44], who use McDiarmid’s result centrally in developing their OUQ technique for
formal certification in an engineering context.

Based on the results in Section 4.2, we can assert a finite bound on daily portfolio losses. Based on the
refactoring of risk in Sections 3.2 and 3.3, we can write the portfolio loss function in terms of two independent
risk variables. These results are the chief prerequisites for the application of McDiarmid’s inequality (19) to
the certification problem. Formally, this is

Theorem 1 (McDiarmid). Suppose that {Z1, Z2 . . . ZM} are independent random variables on some proba-
bility space (Ω◦,F◦,P◦).

def
Fix a bounded function Φ : RM → R and define Y = Φ(Z1, Z2 . . . ZM ). For each m ∈ {1, 2 . . .M},

define

δ◦,m
def
= sup

|Φ(x)− Φ(x′)| :
∑

1≤m′≤M
m′=m

|xm′ − x′m′ | = 0




6


(17)

and then define

∆
def
=

√√√√ M∑
m=1

δ2◦,m. (18)
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For each ε > 0 we then have

P {Y ≥ E[Y ] + ε} ≤ exp

[
−2

ε2

∆2

]
(19)

Main idea of the proof. By conditioning on an increasing number of factors, Zm, we can define a martingale
(Ym)M M

m=0 with respect to a filtration {Fm}m=0 such that YM = Y and Y0 = E[Y ] and such that 
|Ym − Ym−1| ≤ δ◦,m

def
= sup

|Φ(x)− Φ(x′)| :
∑

1≤m′≤M
m′=m

|xm′ − x′m′ | = 0


6

Then

E
[
etYM

]
= E

[
E
[
et(YM−YM−1)

∣∣FM−1] etYM−1

]
≤ exp t2

δ2◦,M
8

E
[
etYM−1

]
.

[ ]
Iterating,

E
[
etYM

]
≤ exp

∆2
◦

8
t2

[ ]
where

∆◦
def
=

√√√√ M∑
m=1

δ2◦,m. (20)

We then use exponential Chebychev’s inequality and optimize over t (as one does in the standard proof of
large deviations upper bounds).

The variation δ◦,m in (17) is the variation in the mth coordinate.
We wish to use McDiarmid’s inequality (19) to (statistically) bound the loss incurred by a financial

institution, but we have only N scenarios with which to test the loss function. Recall that `eN is the
empirical mean of the loss given by equation (2). We would like to use `eN to bound the population expected
loss `, given by equation (1).

Our main result is

Theorem 2. We have that
P
{
` ≥ `eN + θMcDiarmid

N,ε

}
≤ ε

where √
1

θMcDiarmid 1
N,ε = κ ln

2N ε
(21)

with

κ2 = sup
u1,u2,v∈R

∣∣∣(−{P̄ + c1F
−1
1 (u1) + c2F

−1
2,F−1

1 (u1)
(u2)

})+
∧K

−
(
−
{
P̄ + c1F

−1
1 (v) + c2F

−1
2,F−1

1 (v)
(u2)

})+
∧K

∣∣∣∣
+ sup
u,v1,v2∈R

∣∣∣∣(−{P̄ + c1F
−1
1 (u1) + c2F

−1
2,F−1

1 (u1)
(u2)

})+
∧K

−
(
−
{
P̄ + c1F

−1
1 (u1) + c2F

−1
2,F−1

1 (u1)
(v)
})+

∧K
∣∣∣∣ ;

∣

κ captures the relevant parts of the variation in F1 and F2.
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To prove Theorem 2, we want to connect the setup of Section 3 to McDiarmid’s inequality (Theorem
4.3). Define

Φ(u1, u2) =
N∑
n=1

(
−
{
P̄ + c1F

−1
1 (u1) + c2F

−1
2,F−1

1 (u1)
(u2)

})+
∧K; (22)

then

`eN
(D)
= Φ(U1, U2)

where {U1, U2} is a collection of 2N iid standard uniform random variables20

From (20), we thus see that

∆2
N = N

κ2

N2
;

thus

P {`− `eN ≥ L} ≤ exp −2
L2

∆2
N

.

[ ]
(23)

The formula (21) identifies θMcDiarmid
N,ε as the value of L which makes the right-hand side of (23) equal to ε.
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Figure 4: McDiarmid distance

In Figure 4, we plot the McDiarmid distance at 6 months (non-overlapping) windows. When the McDi-
armid distance is small, the right-hand side of (23) is small, so the estimates of ` can be relied upon; when
the McDiarmid distance is large, the right-hand side of (23) is closer to 1, so one should allow significant
error in using `eN to estimate `.

By comparison, we can use a similar approach for Chebychev’s inequality. Using the fact that 0 ≤ L ≤ K
to conclude that L has variance of at most K, we can apply Chebychev to find that

P ` ≥ `eN + θChebychev
N,ε ≤ ε

{ }
where

θChebychev
N,ε =

K√
Nε

Specifically, we get the following results for the bound on the expected loss in the next quarter. The
McDiarmid’s distance calculated according to Theorem 4.3 is κ = 0.2536 in our example. Let N = 64,
K = 1 and let ε vary from 0 to 1. Figure 5 plots θMcDiarmid Chebychev

N,ε and θN,ε as functions of ε, illustrating the
Chebychevdifference between θMcDiarmid

N,ε and θN,ε as ε varies. The McDiarmid’s bound performs distinctly better
than the Chebychev bound.

Finally, our choice of portfolio in this example allows for a convenient reinterpretation of the McDiarmid
distance derived from equation (23) and plotted in Figure 4 as a fundamental measure of economic uncertainty

20The extension to higher dimensions would necessitate more complicated expressions for Φ. We leave that to the
reader.
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Figure 5: Bounds on the Expected Loss

embedded in the yield curve. By construction, it effectively indicates the amount of variation in the portfolio
value to expect, after conditioning on the outcome of the two independent risk impulses derived in Section
3. Because the portfolio is a laddered (i.e., equally weighted) collection of Treasury securities, profits and
losses on the portfolio components are a simple rescaling of the yield curve fluctuations (stated in terms of
Treasury bond prices) in equation (4).

5 Conclusions

Uncertainty—the unknowns and unknowables [18]—is a central issue for financial systems, with important
implications for investment decisions and economic productivity, and for the responses of system participants
to stresses and surprises in markets. We apply techniques for optimal uncertainty quantification, originally
developed in the engineering literature, to extract a new, fundamental measure of economic uncertainty from
the prices in the Treasury yield curve. We apply this measure to the question of financial stress testing,
illustrating the methodology on a simple laddered portfolio of Treasury bonds. OUQ techniques allow us to
certify the probability that portfolio losses from an interest-rate shock will fall within a given ε bound.

An invigorated emphasis on stress testing is one of the key policy innovations to emerge from the recent
financial crisis. It is now a centerpiece of banking supervision and is expanding into other areas of financial
regulation. Financial firms themselves also deploy stress testing widely for their internal risk management.
Despite this surge in interest, financial stress testing is still an ad hoc exercise in many respects, without a
generally accepted framework to help guide technical innovations or interpret reported results. This paper
contributes to the literature on stress testing by connecting it to the engineering literature on uncertainty
quantification. We introduce the basic techniques of OUQ, including the key calculation of McDiarmid’s
distance, which provides an upper bound on the response of a system to arbitrary shocks to its inputs. In
an engineering context, the McDiarmid distance forms the basis for certification guarantees that bound the
probability of failure for systems and their components. We apply the measure in an economic context to
extract a fundamental measure of economic uncertainty from the risk-free yield curve. We apply the measure
to an example portfolio of Treasury bonds over the 2006-2014 period to demonstrate how OUQ techniques
might (or might not) support certification guarantees in financial stress testing. This example allows us to
ignore credit risk and focus on stress tests originating from pure market risk.

The application of McDiarmid’s distance has two important prerequisites. First, the input factors influ-
encing the system response of interest must be statistically independent of one another. In our example, the
system response of interest is the economic value of the bond portfolio after the occurrence of a hypothetical
shock. In engineered systems, statistical independence is often achieved from first principles by physically
isolating various subsystems and their inputs. For our portfolio of Treasury securities, we approximate the
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separation of inputs by first performing a standard principal components decomposition of the yield curve
into linearly orthogonal factors, and then further factoring their cumulative distributions to find a set of
fully independent (within sample) factors. Second, the component-wise variation of the output function
must have finite diameter. The absolute variation of the response to any univariate input change must have
a finite upper bound; no matter what happens to an isolated input, the output response must be limited.
For long bond positions, this constraint is satisfied trivially. Bond values are monotonic in discount rates,
with a maximum of zero (for an infinite rate) and a minimum of undiscounted interest plus principal (for a
zero rate).

Although the independence and finite-response assumptions of the McDiarmid formula appear to be
satisfied for our hand-picked example, they will be less trivial in more general cases. Moreover, there are a
number of other conditions that we assume to hold, either implicitly or explicitly. Some of these are relatively
minor, technical assumptions that should plausibly hold for any long-only portfolio of credit-risk-free bonds.
For example, we ignore day-count conventions, temporal discretization to daily observation frequencies, and
divisibility to unitary (one dollar) allocations. We implicitly assume that the method of Gurk¨ aynak et al. [28]
delivers a reasonable approximation to actual bond transaction prices; those authors themselves explicitly
avoid off-the-run Treasuries as excessively unpredictable. We also assume, with supporting evidence from a
basic time-series analysis, that our derived risk factors are temporally independent. Although we chose to
certify the portfolio’s expected loss exposure at a one-quarter horizon, extending the methodology to other
event horizons should be straightforward.

However, the bond portfolio example also builds in several more fundamental economic assumptions. For
example, our calibration of the model uses data from the recent (2006-14) period, which includes the financial
crisis. Although it is clearly useful to examine the methodology under conditions of a major stress event, it
would nonetheless be useful to examine performance of the approach when applied to other asset classes, risk
factors, and countries. Such extensions remain a topic for future research. A two-factor approximation to the
yield curve is adequate for our Treasuries example, but it is possible that approximating other yield curves
or other time periods might require additional principal components. Our method for separating orthogonal
principal components into fully independent factors should be readily extensible to this higher-dimensional
case, at the cost of additional layers of algebraic recursion in the derivation. We also implicitly assume that
the bond portfolio is a “price taker” in the context of the stress test. The portfolio is not large enough
to generate fire-sale (or other) feedback effects back to the yield curve as a consequence of a stress event;
whether this assumption is justified for a large dealer is questionable.21 Similarly, we assume the stress
event does not provoke a discretionary policy response that might feed back to affect the yield curve. In
general, OUQ techniques break down for systems that insert human decision-making into the process loop in
significant ways, because it is impossible to impose a priori bounds on the possible extent of operator error.

The exercise supports two important conclusions. First, we can successfully apply the techniques of OUQ
to the Treasury yield curve to extract McDiarmid’s distance as a new, fundamental measure of macroeconomic
uncertainty. The level of uncertainty is a key factor for financial stress testing, but is also relevant in many
other economic and policy contexts.22 The McDiarmid measure of uncertainty is available less frequently than
certain other measures, such as that of and Baker et al. [3], but has the advantage of deriving from prices, and
therefore ultimately from market participants’ willingness to put capital at stake. The McDiarmid measure
offers a non-redundant signal to the debate on macroeconomic uncertainty, and therefore has potential
applications far beyond stress testing. This remains a topic for future research.

Second, we conclude there are daunting challenges for programmatic certification of financial stress tests.
The McDiarmid distance clearly and significantly improves on the Chebychev bound as a basis for response
certification. Chebychev’s rule provides the most important, fully general, and distribution-free alternative to
McDiarmid as a basis for bounding expected portfolio loss. Unfortunately, in the recent crisis, fundamental
uncertainty, as measured by the McDiarmid’s distance, spikes in late 2008, precisely when certification was
most needed, as evidenced by the Fed’s initiation of the Supervisory Capital Assessment Program (SCAP)

21Bookstaber et al. [12] argue that the absence of feedback effects is a significant limitation of the current generation
of stress tests (which they refer to as “version 2.0” stress testing), especially if the goals are macroprudential.

22See, for example, Bloom [8] and the references therein.
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process. The fact that certification would be most useful when reported for entire financial firms rather
than individual investment portfolios compounds the challenges. The boundaries of the firm simultaneously
represent: (1) an information firewall limiting the visibility of creditors and trading counterparties, and
(2) the legal threshold at which capital regulations and bankruptcy claims will be enforced by external
authorities. At this scope, the presence of human decision makers, such as managers and regulators, with
significant discretionary authority to act in ways that disrupt the data-generating process defeats the basic
assumptions of the OUQ methodology. Unsurprisingly, firm-level financial stress testing will probably never
be a fully mechanical, automated process.

On the other hand, OUQ techniques show more promise for more narrowly isolated subsystems within
the firm, such as individual portfolios or algorithms. We have demonstrated how to apply the OUQ method-
ology to portfolios of simple, credit-risk-free government debt, which has a relatively well understood, low-
dimensional factor structure. One key to the application of the method was the exclusion from consideration
of feedback effects and disruptive interventions that might shift the data-generating process. This assumption
often becomes more plausible as the scope of analysis narrows to exclude human actors as well as possible
interactions with other system components. It also becomes more plausible as key financial processes, such
as securities trading and portfolio risk analysis, become more automated. The design and testing of these
isolated algorithmic components is, or should be, an engineering exercise, to which OUQ methods could
make beneficial contributions.
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