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1 Introduction

Understanding the transmission of interest rate shocks to corporations is of paramount

importance to policymakers and economic researchers, as corporate borrowing is widely

used to fund investment, production, labor, and other real activities. While economic theory

suggests that financial institutions extend credit to firms at a premium that compensates for

default risk, it is still widely debated and researched as to how corporate credit spreads are

affected by interest rate shocks through monetary policy.1 This transmission mechanism has

played a crucial role in the last two decades: during the 2007-09 financial crisis and during

the recent market turmoil sparked by the COVID-19 pandemic.2

In this paper we use higher-frequency measures of unexpected movements in interest

rates and of credit risk to shed more light on the transmission of monetary policy shocks into

corporate credit markets. To ensure that our results do not depend on a particular measure

of monetary policy shock, we use four different measures. As introduced in Gürkaynak, Sack,

and Swanson (2005), we use Target and Path measures to control for unexpected changes

in the current federal funds rate targets and movements in the short-run path of interest

rates, respectively. To control for term structure movements in the zero lower bound (ZLB)

period, we use a measure related to large scale asset purchases (LSAP) from Swanson (2020)

and a monetary policy shock developed by Bu, Rogers, and Wu (2019) that uses longer-term

Treasury securities for identification purposes. Finally, to measure credit risk at the firm-

level, we take advantage of daily quoted prices on the credit default swap (CDS) market. As

the CDS effectively insures against a default event, its time-varying premium (referred to as

a “spread”) directly serves as a market-based measure of credit risk.

Using daily data going back to the early 2000s, we find a positive and significant relation-

ship between unexpected monetary policy shifts and credit risk around Federal Open Market

Committee (FOMC) announcement days. On average, we find that a 1 standard deviation

surprise in monetary policy leads, on average, to a 1 basis point movement in CDS spreads.

The significance is robust to multiple measurements of monetary policy, firm level controls,

and fixed effects at various levels. We additionally find that unexpected movements of inter-

1A number of studies have focused on understanding the bank lending channel of monetary policy, liq-
uidity transformation, and its connection to asset prices (see e.g., Drechsler, Savov, and Schnabl (2017)
and Drechsler, Savov, and Schnabl (2018)). Another very recent working paper examines credit costs and
monetary policy (Anderson and Cesa-Bianchi (2020)).

2The financial crisis of 2008-09 featured a number of non-financial firms whose credit spreads were dis-
proportionately affected. The implementation of the zero lower bound and large-scale asset purchases by
the Federal Reserve greatly helped and had a strong impact on them (see Gilchrist and Zakrajsek (2013),
Swanson and Williams (2014), and Swanson (2016)). With respect to recent events in March 2020, the
Federal Reserve reacted swiftly by cutting the federal funds rate to zero and by establishing corporate credit
facilities with the intent to purchase Treasuries and agency MBS at an unlimited basis.
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est rates significantly affect two components of credit risk: compensation related to expected

losses as well as a credit risk premium component that measures additional compensation

for default risk.

Not all firms respond to monetary policy in the same manner. Consistent with recent

cross-sectional evidence (e.g., Javadi, Nejadmalayeri, and Krehbiel (2017), Guo, Kontonikas,

and Maio (2020), and Smolyansky and Suarez (2020)), we find that firm-level risk is an

important driver of the response to monetary policy shocks. Riskier firms, that is firms

with higher ex-ante CDS spread levels, display a stronger sensitivity to monetary policy

shocks than less risky firms do. Quantitatively, for firms with a 1 standard deviation higher

CDS spread, a 1 standard deviation interest rate surprise marginally increases future spreads

between 0.6 and 0.7 basis points. Similarly, firms in the highest risk quintile (the top 20%

of the CDS rate distribution) display much stronger response relative to those in the lowest

quintile. These heterogeneous sensitivities affect both the expected loss and credit risk

premium components of CDS spreads.

As discussed in Chava and Hsu (2019), among others, equity prices can also display a

response to monetary shocks depending on the severity of firm-level financial constraints. We

show similar effects by extending our analysis to the equity universe. Stock prices of firms

with high credit risk react significantly more than stock prices of low credit risk firms. When

we consider stock price changes using a 1-hour window around FOMC announcements, stock

prices of high credit risk firms contract 15 basis points more than stock prices of low credit

risk firms in response to a 1 standard deviation contractionary monetary surprise. When

we look at the cumulative 2-day returns, stock prices of high credit risk firms contract 40

basis points more than low credit risk firms. These are economically and statistically large

differences.

Financial leverage and market size can also serve as empirical and theoretically-motivated

proxies for cross-sectional risk. In our study, we show that firms with higher leverage and

lower market values of equity display increased sensitivities to monetary policy. However,

the role of leverage and market size becomes relatively insignificant when we simultaneously

control for an interaction effect using the historical level of CDS spreads. We interpret these

results as suggestive of CDS as better risk measures for the pass-through of shocks into asset

prices.

Finally, our paper is one of the first to separate CDS spreads into their expected loss and

credit risk premium components, and study their relative importance for the pass-through of

monetary policy shocks. We find that when examining the response of CDS spreads, both the

credit risk premium and the expected loss channel seem to play a significant role. Meanwhile

when examining the response of equity returns, regardless of time frequency (1 hour vs.
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2 day returns), it always is the case that compensation for physical default probabilities

matters more. These results suggest that credit risk premia and expected default affect the

transmission of shocks differentially across corporate bonds and equity markets.

One major issue that arises when using CDS prices as a direct measure of credit risk is that

the credit default swap is a derivative instrument that indirectly captures the financing risks

that are apparent in corporate bonds. As they are not precisely the same set of instruments

and not necessarily traded by the same market participants (see Augustin, Subrahmanyam,

Tang, and Wang (2014)), CDS spreads, at times, may have differing levels of liquidity relative

to corporate bonds, which can imply unequal levels of company-specific credit risk. This

phenomenon is also known as a non-zero CDS-bond basis, as discussed in Bai and Collin-

Dufresne (2019). To handle these issues, we conduct robustness on our tests to ensure that

CDS-related liquidity does not affect the main dynamics. We do this by limiting our sample

to security-level observations that have a larger number of reported dealer quotes and we find

that our results actually become stronger. Furthermore, as discussed in recent regulatory

reports from the Office of the Comptroller of the Currency (OCC), the demand for credit

derivatives by financial institutions has decreased over time.3 To ensure that our reported

results are not sensitive to a particular time period with increased derivative demand and

volume, we conduct analysis over different subsamples (ZLB vs. non-ZLB) and find that our

results are robust, particularly when we use the monetary policy shock measure of Bu et al.

(2019), which is identified using longer-term Treasury movements.

Beyond the full sample evidence, our analysis can be directly applied to the recent

COVID-19 episode. Following the pandemic’s adverse effect on the real economy, mone-

tary and fiscal authorities enacted a number of large-scale stimulus programs. We focus

our attention on the March 23, 2020 announcement by the Federal Reserve that estab-

lished corporate credit facilities and stated an intent to purchase Treasuries and Agency

mortgage-backed securities (MBS) at an unlimited basis. As this was a significant episode

of expansionary monetary policy, we observe changes in CDS spreads, default probabilities,

and equity returns consistent with the findings obtained using the full sample of interest

rate shocks: Firms in the highest quintile of risk, as proxied by their CDS levels, are those

that reacted the most. High credit risk firms’ CDS prices and physical default probabilities

reduced dramatically following the policy announcement relative to less risky firms. At the

same time, and in a way consistent with our full-sample findings, stock returns of firms in

the highest CDS category fell much more than the ones of firms in the lowest CDS category.

To help understand the heterogeneity in credit risk response to monetary policy shocks

3See the Quarterly Report on Bank Trading and Derivatives Activities from the Office of the Comptroller
of the Currency, Q4 2019.
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and the irrelevance of firm leverage in explaining this response once we control for CDS, we

design a stylized equilibrium model of corporate leverage, investment, and monetary policy.

In the model, firms seek to maximize the expected, present value of future, nominal cash

flows over a 3-period horizon. Firms invest without leverage in the first period but have

access to debt capital markets in the second period. When issuing debt, firms agree to pay

a spread on top of the risk-free rate, depending on their default risk and intermediary risk

aversion towards that default risk. In the final period, firms either pay back their creditors

and distribute positive dividends, or they default.

We embed monetary policy into the model by assuming that central banks set short-term

interest rates through a Taylor Rule. Unexpected shocks to the Taylor Rule have a direct

impact on the nominal interest rates in the economy and most importantly on investor risk

aversion through the stochastic discount factor (SDF). We show analytically and numerically

that the sensitivity of the real SDF with respect to monetary policy matters greatly for the

transmission of policy shocks. When the sensitivity is high, there are greater (aggregate)

effects of monetary policy on credit spreads. In terms of heterogeneity, the model generates

asymmetric responses by firms, as the equilibrium credit spread curve is highly convex with

respect to the ex-ante market capitalization of firms, and with respect to a firm’s credit risk.

How does the model generate this natural convexity in credit costs? Upon seeing an

increase in bond yields due to a contractionary monetary shock, all firms would like to cut

back on leverage. Reducing leverage is tied to a reduction in investment. Firms that are

closer to default and are riskier have a low endogenous capital stock to begin with. For this

reason, cutting back on investment significantly harms them the most and, in equilibrium,

they are even closer to default. Hence, credit spreads of the riskiest firms increase the most

following an unexpected and positive shock to interest rates.

Literature Review

Our paper relates many different strands of research, including work in the areas of

monetary policy and its measurement, corporate credit risk as identified by bond and CDS

markets, and the interaction between the two.

A significant portion of work in monetary economics seeks to examine whether fluctua-

tions in the money supply and short-term interest rates have non-neutral effects on real quan-

tities (see e.g., Christiano, Eichenbaum, and Evans (2005)). Crucial to those experiments is

the identification of exogenous and unexpected shocks to interest rates. While one subset

of the literature focuses on identification through structural vector-autoregressions (SVAR),

another one uses high-frequency financial market data surrounding FOMC announcements.

Starting with Kuttner (2001), researchers have suggested that changes in actively traded
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interest rate futures contracts, in 1 hour windows surrounding FOMC announcements, bet-

ter identify exogenous changes in market expectations. Using a similar approach, Bernanke

and Kuttner (2005) examine the link between these unexpected changes and equity market

prices. Instead of using the actual change itself, Gürkaynak et al. (2005) rotate the FOMC-

related movements among a number of short-term futures contracts to show that there exist

2 factors that significantly affect asset prices – a target and a future path factor. Similar to

the aforementioned paper, we also use the Target and Path factors as two of our key mone-

tary policy shock variables. The latter quantities are unable to capture movements in policy

in the ZLB period as target interest rates were kept at or close to zero. To account for this

point, Swanson (2020) extends the factor analysis in Gürkaynak et al. (2005) to introduce a

third factor that accounts for monetary policy surprises linked to LSAP programs. In our

analysis, we also use this LSAP factor but additionally account for the ZLB period using

a set of shocks constructed by Bu et al. (2019). The work by Bu et al. (2019) focuses on

using a wide set of zero-coupon bond yields (with maturities ranging from 1 to 30 years) to

identify a monetary policy shock that is active during the ZLB.

As greater amounts of cross-sectional and time series data have surfaced, empirical re-

search related to credit risk has flourished. To this day, financial economists have explored

corporate bond-based credit spreads to make a number of statements regarding firm and

economy-wide dynamics (see e.g. Dufresne, Goldstein, and Martin (2011), Gilchrist and

Zakrajsek (2012)). More relevant to our study of monetary policy interactions, a number of

papers discuss the effects of policy on the corporate bond market. Both Javadi et al. (2017)

and Guo et al. (2020) discuss the ways in which policy-related rate movements affect corpo-

rate spreads. Both papers show that speculative or lower-rated bonds are more responsive

to monetary policy. While their findings are similar in spirit to ours, they mainly explore

selection issues with respect to credit ratings and do not explore how actively traded prices

matter for transmission. Our paper, on the other hand, incorporates market-based CDS

prices directly and compares them to slower-moving measures such as leverage. A recent

paper by Smolyansky and Suarez (2020) also examines the effects of monetary policy on

the corporate bond market, by disentangling two effects – a “reaching for yield” effect and

an “information” effect. The authors also use monetary policy shocks identified in higher

frequency and find that unanticipated policy actions lead to heterogeneity in corporate bond

return responses.

In practice, as credit derivative markets substantially increased in use following the early

2000s, many banks and hedge funds have opted to trade in the liquid world of credit default

swaps. The market is large and robust and the earlier cited OCC regulatory study suggests

that banks alone hold more than $3.9 trillion in notional protection with respect to CDS. In
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our study we primarily use CDS data – that is, quotes of credit default swap spreads provided

by broker dealers. There are several advantages to using CDS over corporate bond data.

Our CDS data is often available daily for each firm, which allows for a better identification of

the impact of monetary policy shocks. Perhaps due to the daily frequency, Blanco, Brennan,

and Marsh (2005) suggest that the CDS market leads the bond market in incorporating

information and determining credit risk. Similarly, Hilscher and Wilson (2017) suggest that

CDS contain additional information on top of credit ratings. Berndt, Douglas, Duffie, and

Ferguson (2018), a related paper, discusses time series and cross sectional patterns in CDS.

Among many other things, the authors show that a large portion of CDS spread movements

is determined by factors outside of physical default probabilities.4

A recent, related literature bridges the gap between monetary policy and firm-level fun-

damentals, and examines how monetary policy can have heterogeneous effects on firm-level

decision making. Ottonello and Winberry (2019) examine the investment and leverage re-

sponse following interest rate shocks and find that firms with lower levels of risk respond

the greatest. Jeenas (2019) explores similar issues as Ottonello and Winberry (2019) but

stresses the role of balance sheet liquidity. In contrast with both of these studies, we explore

how market-based asset prices respond on a daily level following an unexpected policy an-

nouncement. The daily data is particularly important as it helps with the identification of

the shock transmission.

While the focus of their study is on cross sectional equity market returns, Chava and

Hsu (2019) show that monetary policy has a greater impact on the returns of firms that are

more financially constrained. The authors use the financial constraints measure originally

constructed by Whited and Wu (2006). Our equity results are similar to theirs, in that CDS

rates can be likened to a financial constraint measure. Additionally, of course, we examine

the heterogeneous impact of unexpected interest rate shocks on credit risk movements and

their risk premium components.5

In a closely related paper, Anderson and Cesa-Bianchi (2020) use secondary market prices

of corporate bonds and related credit spreads as their key response variable of interest. They

find that interest rate shocks indeed affect bond-based credit spreads and that more-leveraged

4Historically CDS have been used as a direct proxy of credit risk but in recent times, issues of liquidity
have become more relevant, as the CDS-bond basis emerged in the financial crisis period (see Augustin et al.
(2014) and Bai and Collin-Dufresne (2019) for more information). In our study, we are able to control for
these liquidity issues by including firm-level variables that have been suggested to affect the bond basis.
Furthermore, our results are robust to the use of different sample periods (full sample, ZLB, and non-ZLB).

5Similarly, Ozdagli (2017) explores the reaction of equity market prices to informational and financial
constraint frictions. His paper shows that the stock prices of more constrained firms are less responsive to
monetary policy. This result is different from the findings in Chava and Hsu (2019), however some of it may
be due to differences in the type of constraint measure they use. Ozdagli (2017) focuses on using a constraint
measure that is similar to monitoring costs, similar to the financial accelerator literature.
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firms are more affected. Our analysis is consistent with their findings, however we show that

using a market-based measure of credit risk (such as CDS) is more informative than using

a more static measure such as leverage. Our results regarding the relative informational

content of CDS also extend when we examine the cross-sectional responses of equity prices.

These results can be related to those in Corvino and Fusai (2019) and Friewald, Wagner,

and Zechner (2014) who find that firm-level credit risk premiums and equity returns contain

similar information and move together.

2 Data

2.1 Monetary Policy Shocks

Unexpected movements in risk-free interest rates – as set through monetary policy – can

be measured in different ways. To obtain a comprehensive picture of how such shocks affect

credit risk, we use four different measures that all involve the high frequency identification

approach popularized by Kuttner (2001) and Gürkaynak et al. (2005), among others.

Gürkaynak et al. (2005) conclude that at least two factors are needed to explain changes

in a larger cross section of monetary policy–sensitive instruments following FOMC announce-

ments. These two factors are determined through a principal component analysis (PCA) of

30-minute changes in federal funds futures rates and Eurodollar futures rates. In the litera-

ture, these factors are often referred to as “Target” and “Path” factors – the former because

it loads most heavily on the shortest-term interest rate contracts and the latter as it has

implications for medium-term expectations of future rate movements. In our paper, we use

updated versions of these two factors (see Swanson (2020) for more details).

A natural concern in the identification of monetary policy shocks is the inability of short-

term rates to characterize policy when rates are at the zero lower bound, as was the case

from late December 2008 through December 2015 in our sample. To address these concerns

we use two additional measures. The first measure is constructed in Swanson (2020) and

effectively is the third principal component from the component extraction described above.

Additional restrictions are placed on this third principal component (through an orthogonal

rotation of the factors) such that the third component does not affect the Target variable

during the ZLB period and is relatively small prior to the ZLB. In Swanson (2020), this factor

is described as a LSAP factor. Our fourth and final measure of monetary policy is developed

by Bu et al. (2019) and delivers a measure that directly captures the sensitivities of longer-

term interest rates to monetary policy announcements and is purged of the central bank

information effect (e.g., Nakamura and Steinsson (2018)). Bu et al. (2019) employ a Fama-
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Macbeth style procedure using daily data surrounding FOMC announcements, where the

test assets include longer-term Treasury securities. The time-varying estimate (a commonly

priced risk factor) that emerges from the second step is the effective monetary policy shock.

In all subsequent analysis, we will refer to the latter shock as BRW.

In total, our dataset includes 145 FOMC announcement dates – the first one on Wednes-

day, January 30, 2002 and the last one on Wednesday, June 19, 2019. We include only

scheduled FOMC meetings. The beginning date of our dataset is restricted by the availabil-

ity of firm-level CDS data prior to 2002. Figure 1 reports the time series for all four monetary

policy variables: Target, Path, and LSAP in the top panel and BRW in the bottom panel.

In both panels, the gray area indicates the zero-lower bound period while the dashed lines

respectively reflect key announcement dates during the ZLB for QE1, QE2, and Operation

Twist. As the first three factors are comparable (arising from the same estimation), they

are plotted in the same figure; meanwhile, the BRW variable is plotted separately in basis

point terms. Figure 1 shows that in the pre-ZLB period the Target and Path factors are

more volatile. During the ZLB period the Target and Path display less variation relative to

LSAP and BRW. It is worth noting that that LSAP and BRW don’t perfectly display the

same behavior. On the QE1 announcement date (March 18, 2009) both of them dramatically

decrease as quantitative easing was a strongly unexpected expansionary shock. However, on

the QE2 and Operation Twist episodes, they show differing signs and magnitudes of response

– this will play an important role later as we examine the credit risk response.

Table 1 displays summary statistics of the four monetary policy shocks used in the em-

pirical analysis, both for the full sample (Panel A) and for two subsamples: the conventional

period (Panel B) and the zero lower bound period (Panel C).6 Within each panel, all rows

provide statistics on Target, Path, LSAP, and BRW (in basis points). What was clear in the

figures regarding the behavior of these shocks in the ZLB and non-ZLB periods is reinforced

in Table 1. Target and Path variables have up to 25% more variation in the non-ZLB period

while LSAP and BRW have up to 40% less (relative to the full-sample). Meanwhile during

the ZLB period, Target and Path variables have up to 74% less variation while LSAP /

BRW variables display roughly 40% more variation. This makes sense as the first two shock

variables have larger loadings on shorter-end contracts.

Table 2 examines the correlations across all of our monetary policy variables and shows

that in the full sample, Target, Path, and LSAP have correlations close to zero, as expected.7

6We follow Bu et al. (2019) and define the ZLB period to cover the years of 2009 to 2015. The conventional
period covers the years from 2002 to 2008 and from 2016 to 2019.

7As the three of them are principal components to begin with, one might expect their pairwise correlation
to be precisely zero. The reason this is not the case is because Swanson (2020) constructs these orthogonalized
factors over a much longer sample and we are restricting the pre-built factors to a shorter time horizon, which
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We also find that BRW has a small correlation with Target and larger correlation with Path

(ρ = 0.22, 0.52 respectively). The latter makes sense as the Path factor picks up on medium-

term changes in interest rates and the construction of BRW involves bond yields of different

maturities. Perhaps most interestingly, LSAP and BRW don’t have a strong correlation

(ρ = 0.20 unconditionally and ρ = 0.35 during the ZLB) and some of this can be seen

through the construction procedure itself. LSAP is simultaneously extracted with Target

and Path via a PCA; meanwhile, BRW is able to pick up on long-term unexpected yield

changes on QE dates without any competing factors.

2.2 Firm-Level Data

Firm–level data come from multiple sources: data on credit default swap quotes from

Markit, data on expected default frequency (EDF) from Moody’s Analytics, quarterly ac-

counting characteristics from Compustat, and equity prices from CRSP (daily) and TAQ

(minutes surrounding FOMC window). We use companies that can be unambiguously

matched across the different data sources. Furthermore, we exclude from our sample fi-

nancial firms (SIC 6000-6999 in Compustat and sector Financials in Markit), utilities (SIC

4900-4999 in Compustat and sector Utilities in Markit), and quasi-governmental and non-

profit firms (SIC 9000-9999 in Compustat and sector Government in Markit). We also

exclude firms not incorporated in the United States (Compustat foreign incorporation code

different from US).

Following Berndt et al. (2018), we use Markit to obtain data on (i) 5-year CDS quotes

based on the no restructuring (XR) docclause and (ii) recovery rates. We restrict these

data to CDS contracts written on senior unsecured debt (Markit tier category SNRFOR)8.

Whenever possible, we also provide the annualized, 5-year conditional probability of default

(EDF) from Moody’s Analytics. This ex-ante measure of default likelihood is derived from a

Merton-type structural model for default prediction and accounts for stock price information,

leverage, time-varying equity volatility, and other variables.

Table 3 reports the firm-level summary statistics. Panel A describes the 5-year CDS

spreads (in basis points), the recovery rate, and the numbers of CDS quote contributors

(i.e., composite depth) from Markit. As is standard in this data, Markit aggregates a num-

ber of quotes from CDS broker-dealers to provide an average CDS price. We have 54,886

firm-FOMC announcement day observations, which imply about 384 firms per FOMC an-

nouncement day, on average. These firms have an average (median) CDS spread of 187 (90)

can slightly tilt the correlation.
8We obtain very similar results using modified restructuring (MR). These results are available upon

request.
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bps, an average and median recovery rate of about 40%, and an average (median) number

of quote contributors of 5.7 (5).

Panel B of Table 3 reports the annualized conditional probability of default (EDF). Since

we have data on EDF only starting from 2004, the number of firm-FOMC announcement

day observations is lower (40,223). The average firm in our dataset has an annualized

probability of default of about 1% on FOMC announcement days, while half of the firms

have an annualized probability of default less than 0.32%. Panel C reports accounting

data from Compustat for firms that have data on CDS. Accounting data are at a quarterly

level and are calculated the quarter before the FOMC announcement quarter. The average

(nominal) firm size, measured as total assets (Compustat item atq) is about $21 billion and

more than half of the firms are larger than $8.8 billion. In our dataset, we have firms as small

as $13 million (Genzyme Molecular Oncology in 2002q4) and as big as $548 billion (AT&T

in 2019q1). The average leverage ratio–measured as total debt (item dlcq plus item dlttq)

divided by total assets–is about 32% of total assets, while the average cash-to-asset ratio

(item cheq divided by item atq) is about 10% of total assets. In our sample, firms’ physical

investment grows, on average, by about 1% each quarter. To measure investment growth, we

consider the log-change in quarterly property, plant, and equipment (item ppentq). We use

the firm-level accounting variables described above as controls in the analysis that follows.

To conclude, Panel D reports the equity return on the day of the FOMC announcement,

the return calculated around a 1-hour window (15 minutes before to 45 minutes after) around

the announcement time, and the market capitalization for publicly traded firms that have

data on CDS rates. All daily return and market capitalization data is from CRSP while

higher-frequency data is from TAQ. The average daily return is about 0.36%, while the 1-

hour window return is 0.05%. The average market capitalization is about $26 billion and

more than half of the firms in our sample have a market capitalization larger than $9 billion.

3 Effects of Interest Rate Shocks on Credit Risk

In the first part of the empirical analysis we study the aggregate, homogeneous effects

of movements in monetary policy measures on credit risk and its components. The two

main dependent variables we focus on are CDS spreads and the expected loss component

of CDS, which is meant to solely account for movements in “physical” default probabilities.

To measure the latter quantity, we rely on the annualized 5-year conditional probability of

default (EDF) from Moody’s Analytics to measure the firm-level expected default probability

and on the Markit recovery rate to measure the loss upon default so that the expected loss

is calculated as EDF × (1− recovery rate).
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Let yit denote the level of the dependent variable (CDS or Exp. Loss) and εmt the shock

to monetary policy on date t, where t is a FOMC announcement day. To measure how

monetary policy shocks trigger changes in yit, we examine the linear model below:

∆yit = β0 + βmε
m
t + errorit (1)

where ∆yit = yi,t+1 − yi,t−1. For example, if y is a quoted CDS spread and the FOMC

announcement takes place on Wednesday January 4, we would take the difference between

the value on Thursday January 5 (yi,t+1) and Tuesday January 3 (yi,t−1). The reason we

add an additional day to the future value is due to the way in which Markit conducts its

surveys. Surveys occur throughout the day and we cannot ensure that the price quote on the

FOMC day will truly incorporate responses following the monetary shock. Hence, we use the

subsequent day’s value. We standardize monetary policy shocks so that βm represents the

change in CDS due to a one standard deviation (1σ) change in the monetary policy shock.

In the baseline regression specification, we include firm fixed effects and cluster standard

errors at the FOMC date level (i.e., residuals across firms can potentially be correlated on a

given announcement day).9

Columns 1 to 4 in Panel A of Table 4 report the reaction of credit risk, measured using

CDS prices, to the four different monetary policy shocks. For Target, Path, and BRW, we

find that a 1σ monetary policy surprise generates a significant and positive increase in CDS

spreads between 0.93 and 1.20 bps. This result is consistent with the results in Anderson and

Cesa-Bianchi (2020), who find a positive and significant relation between weekly changes in

credit spreads and monetary policy surprises. Our results are statistically significant with

t-statistics between 1.81 and 3.36. Interestingly, we find that the LSAP shock does not have

a significant effect on credit risk while BRW does. As previously mentioned, these results

might be due to the way in which both of them are constructed: BRW is directly based

on interest rate changes at the longer end of the term structure, while LSAP is the third

component of a principal component decompositon.

As discussed, CDS spreads depend on an expected loss component and a credit risk

premium component. In the middle columns of Table 4, we illustrate the effect of monetary

policy surprises on the expected loss component. Columns 5 to 8 show that a 1σ monetary

policy surprise generates a significant and positive increase in expected loss between 0.48

and 0.59 basis points (Target, Path, and BRW). Again, the estimated coefficient on LSAP

is not significant.

To examine how the credit risk premium component of credit risk responds to mone-

9This is the most conservative level of clustering. If we change it to firm-level or industry-level results
become even stronger.
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tary policy shocks, we run a version of the regression where we include the expected loss

component on the right hand side:

∆yit = β0 + βmε
m
t + βexp∆ExpLossit + errorit (2)

Including the ExpLoss term acts as a (rough) control for changes in compensation purely

due to fluctuations in the default probability. The inclusion of the latter variable has two

noteworthy effects. First, the coefficient on the Target shock becomes insignificant, while

the coefficient on the Path shock becomes strongly significant. Second, and not surprisingly,

the linear model’s ability to explain variation in CDS spreads’ changes improves (R-squared

values almost double). Overall, the results in Panel A of Table 4 show that: (i) the Target

shock matters more for the expected loss component of credit risk, (ii) the Path shock

matters more for the risk premium component of credit risk, (iii) the BRW shock affects

both components of credit risk, and (iv) the LSAP shock does not matter for credit risk.

In Panel B of Table 4, we repeat the analysis in Panel A by adding a battery of firm-level

control variables, known prior to the FOMC announcement day. At the firm level, we include

the CDS spread, (log) market capitalization, leverage ratio, cash-to-asset ratio, (log) total

book value of assets, and investment growth. All daily variables are taken from the prior day

and accounting variables are taken from the latest quarter preceding the announcement day.

Adding firm-level control variables reduces the t-statistics marginally and has a negligible

effect on the estimated coefficients of the monetary policy sensitivities. While not reported,

it is worth noting that the levels of both the CDS spread and market capitalization have

negative and highly significant effects on credit risk changes around FOMC announcement

days.

Overall, the results in this section suggest that monetary policy shocks directly affect

credit risk on FOMC announcement days. A contractionary monetary policy shock increases

credit risk through compensation for expected default and the risk premium component.

In the Appendix, we also show that the immediate effects of monetary policy shocks are

mitigated when we examine a longer horizon of CDS changes. This result is in contrast to the

positive and significant effect of monetary policy shocks on longer-horizon changes in credit

spreads documented in Anderson and Cesa-Bianchi (2020). A part of our interpretation is

that the differential result (relative to the credit spread data) is likely driven by the superior

ability of the CDS market to reflect new information. Several studies find that the CDS

market is more liquid than the bond markets and leads the latter in price discovery (see

Oehmke and Zawadowski (2017) and Lee, Naranjo, and Velioglu (2018), among others).
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4 Monetary Policy and Credit Risk Heterogeneity

In the previous section, the linear model treated the response of every firm’s CDS or credit

risk to monetary policy as uniform. In principle, it might be plausible that certain types of

firms (likely those that are constrained or have greater financing issues) are more sensitive to

market-wide funding shocks. In this section we test these hypotheses, focusing on how the

response to monetary policy shocks varies at the firm level. In ways similar to our study and

using credit rating data, Javadi et al. (2017), Guo et al. (2020), and Smolyansky and Suarez

(2020) show that speculative or lower-rated bonds are more responsive to monetary policy

shocks, while Anderson and Cesa-Bianchi (2020) use credit spread data to show that highly

levered firms respond more. In this section, we study how credit risk heterogeneity matters

for transmission of monetary policy shocks into corporate bonds and equity markets.

4.1 Cross-Sectional Credit Risk and Asset Price Response

Our first set of tests examines whether firms with higher CDS spreads are more sensitive

with respect to monetary policy shocks. We conduct two types of exercises: one where

we directly multiply the shock by a lagged value of the CDS spread (linear interaction)

and a second where five categories of CDS spreads are created each day before the FOMC

announcement day and dummy variables are multiplied by the lagged value of the CDS

spread (non-linear interaction). More precisely:

∆yit = β0 + βy

 yi,t−1︸ ︷︷ ︸
lagged spread

×εmt

+ β′XXi,t−1 + τt + errorit

∆yit = β0 +
5∑
j=2

βy,j (1ij,t−1 × εmt ) + β′XXi,t−1 + τt + errorit

(3)

where τt is a FOMC date fixed effect, Xi,t−1 indicates a vector of firm-level variables (eg.

fixed effects and controls from previous section) and 1ij,t−1 takes a value of 1 if firm i is in

CDS risk group j at t − 1 and 0 otherwise. As an example, firms with the highest CDS

spreads at t− 1 would fall in risk group 5.

In Panel A of Table 5, we present the results for the linear interaction model.10 We observe

a significant relationship between CDS spreads and the sensitivity of contemporaneous CDS

change with respect to monetary policy shocks. In terms of interpretation, coefficients are

10We do not include results on the LSAP shock, as it was insignificant in the baseline regressions and rest
of the analysis. Results involving the LSAP shock are available upon request.
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scaled such that βy represents the additional CDS response for firms with 1σ greater CDS

in the cross-section, following a 1σ shock to monetary policy. For example, firms with 1σ

greater CDS have a 0.61 basis point greater response to a Target shock (column 1). The first

three columns indicate that the ex-ante level of credit risk matters for the CDS response to

monetary shocks: the higher the credit risk, the higher the change in CDS spreads. However,

this result is only marginally significant for the BRW shock.

Columns 4 to 6 show that differences in credit risk matter for the response of the ex-

pected loss component. In this case, the interaction coefficient is highly significant across the

different measures of monetary policy shocks. This is not the case for the response of the risk

premium component. Columns 7 to 9 show that, when we control for the contemporaneous

change in the expected loss component, only the interaction term involving the Path factor

is significant.

Results are starker when we examine the non-linear specification as displayed in Panel

B of the Table 5. The first three columns suggest that CDS spreads of firms in the top

credit risk category respond significantly more to a 1σ monetary policy shock than firms

in the bottom credit risk category (the excluded category). On average, and depending on

the measure of monetary policy shock, the change in CDS spreads of firms in the top credit

risk category is between 2.34 and 3.15 basis points higher. To put things into perspective,

following a 40 basis point shock in BRW (about 5σ), firms in the top credit risk category

witness an increase in CDS spreads about 15 basis points larger than firms in the bottom

credit risk category.

When we consider changes in the expected loss and credit premium components sepa-

rately (columns 4 to 9), we find results consistent with the ones in Panel A: interaction terms

involving Target and BRW shocks are highly significant for the response of the expected loss

component, while the interaction term involving the Path shock is particularly significant

for the response of the risk premium component.

To summarize, this section shows that firm-level heterogeneity in credit risk matters for

the transmission of monetary policy shock when we study the response of CDS spreads. This

response is highly non-linear and is mostly driven by firms with high credit risk. Additionally,

the two components of CDS spreads, expected loss and risk premium, react with different

magnitudes to monetary policy shocks.

Equity Price Response

Theoretically, credit risk is connected to equity prices as states of default depend on

market values of corporations. In what follows, we ask whether ex-ante firm-level credit

risk is also an important determinant of equity price responses following monetary policy
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shocks. Table 6 shows that this is indeed the case. Using credit risk categories, we find that

stock prices of firms with high credit risk contract significantly more following an unexpected

increase in interest rates. Our finding is consistent with Chava and Hsu (2019), who show

that monetary policy has a greater impact on the returns of firms that are more financially

constrained.

We use a very similar approach to the nonlinear interaction specification used in the

previous section, however we replace the left-hand side variable with a measure of equity

returns. Specifically, we use two different measures for rit: a 1-hour return surrounding the

FOMC window (columns 1 – 3 of the table) and a 2-day return. Regardless of the equity

return measure, findings are qualitatively consistent in that higher credit risk firms show

a larger equity price sensitivity to monetary policy shocks. An unexpected contractionary

shock has a negative impact on equity prices through a larger discounting of future cash

flows. In terms of economic magnitudes, firms in the riskiest quintile lose 7-16 basis points

in the 1 hour surrounding the FOMC announcement and 40 - 58 basis points in subsequent

2 days. Losses are generally monotonically increasing across risk groups as well. To ensure

there is no short-term reversal type effect, we also control for the lagged 1 day return.

4.2 Credit Risk and Other Measures of Firm-Level Risk

In this subsection, we examine how CDS compares to other measures of cross-sectional

risk – namely leverage and the market capitalization of firms. These measures are all con-

nected as theoretical measures of risk. All else equal, a higher leverage or lower market

capitalization might spell problems for corporate borrowing costs and business prospects.

Furthermore, recent studies have shown that leverage is an important determinant of firm-

level responses to monetary policy shocks. Anderson and Cesa-Bianchi (2020) show that

the response of credit spreads to monetary policy shocks is stronger for highly levered firms.

Ottonello and Winberry (2019) find that firm-level investment is less responsive to monetary

policy shock for firms with higher leverage. Lakdawala and Moreland (2019) document that

highly levered firms became more responsive to monetary policy shocks in the aftermath of

the financial crisis.

To better understand how leverage influences the transmission of monetary policy shocks,

we present a baseline specification where we do not include any measures of cross sectional

credit risk and solely include a leverage interaction term. After examining this specification,

we add on the elasticities with respect to CDS-sorted dummies in an alternative specifica-
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tion.11 Specifically:

∆yit = β0 + βlev

 levi,t−1︸ ︷︷ ︸
lagged leverage

×εmt

+ β′XXi,t−1 + τt + errorit

∆yit = β0 + βlev (levi,t−1 × εmt ) +
5∑
j=2

βy,j (1ij,t−1 × εmt ) + β′XXi,t−1 + τt + errorit

(4)

The results are reported in Table 7. In columns 1 to 6, we use the expected loss component

as a dependent variable, while in columns 7 to 12 we use CDS spreads as a dependent

variable and control for contemporaneous changes in the expected loss component. Table

7 shows that firms with higher leverage are more sensitive to monetary policy shocks. The

expected loss component moves by an additional 0.12–0.30 basis points for firms with 1σ

greater amounts of lagged leverage, while the risk premium component moves an additional

0.14–0.58 basis points.

The magnitude of the leverage interaction term greatly reduces and its significance disap-

pears when we include monetary policy shocks interacted with dummies based on firm-level

credit risk (columns 4 to 6 and columns 7 to 9). For example, comparing column 9 to 12,

we find that the effects of the BRW shock interacted with leverage shrinks from 0.58 to 0.21

and its statistical significance vanishes. Meanwhile, the estimated coefficients on the credit

risk-based dummies remain very similar to the ones reported in Panel B of Table 5.

We reach a similar conclusion using equity returns as the dependent variable. The first

three columns of Table 8 suggest that firms with 1σ higher leverage experience a 2 to 5 basis

point additional drop in equity returns, albeit insignificant statistically. Once we add on the

CDS dummies, these effects change sign and remain insignificant, while firms in the highest

credit risk quintile display a large and significant response to monetary policy shocks (42 to

61 basis point drop over the 2 day window).

Overall our results suggest that credit risk, as measured by CDS spreads, is stronger and

more informative than leverage to understand the heterogeneous transmission of monetary

policy at the firm level.

11In these regressions historical leverage is included as a direct multiplicative term with the monetary
policy shock, while credit risk is interacted through dummy variables. In principle, one could wonder what
the effects would be if they were both treated as categorical variables. In the Appendix we explore such a
specification and show that the main results presented here still hold.
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Comparison to Market Size as a Risk Measure

Beyond leverage, the market value of equity (market size) serves as another candidate

to measure risk in the cross-section. We study the importance of firm size in shaping the

response to monetary policy shocks using the same approach as in the previous section.

Table 9 reports these results.

Columns 1 to 6 show that the logarithm of market capitalization on the day prior to

the FOMC day matters for the response of the expected loss component, even as we control

for firm-level credit risk. Columns 1 to 3 show that firms with 1σ smaller size experience

an additional and significant increase in expected loss between 0.32 and 0.55 basis point

following a contractionary monetary policy surprise. When we include credit risk-based

dummies, the magnitude of the coefficient of the interaction term between size and the

various measures of monetary policy shocks reduces, but differently from the leverage case,

the estimated coefficients do not lose their significance.

Columns 7 to 12 report the results when the dependent variable is the change in CDS

spreads and we also control for the contemporaneous change in the expected loss component.

In this case, size seems to play a minor role and its significance is at best marginal when

we control for credit risk-based dummies. In the latter case, firms in the top credit risk

quintiles still experience a much larger increase in the risk premium component than firms

in the bottom category following a contractionary monetary policy surprise.

To conclude, in Table 10 we show how market size determines the cross-sectional equity

response to monetary policy. In columns 1 to 3, we show that firms with a 1σ smaller size

witness a significant greater reduction in equity prices in the two days following a FOMC

announcement (roughly 0.1 – 0.2 percent larger). When we control for credit risk-based

dummies, we find that CDS does not matter for the transmission of monetary policy into

equity prices while using the Target shock. At the same time, credit risk continues to matter

when we use the Path and BRW shocks. In the latter case, the estimated coefficients are

smaller in magnitude than the ones reported in columns 5 and 6 of Table 6, but they continue

to remain strongly significant.

4.3 Expected Default vs. Risk Premium Channel

In previous sections we focused on the transmission of monetary policy shocks onto asset

prices using time-varying sorts based on CDS spreads. The use of the latter variable prevents

a more granular analysis based on the expected loss and the credit risk premium component,

respectively. In this section, we fill the gap and study how the heterogeneity in monetary

policy response is tied to heterogeneity in expected loss and risk premium compensation.

17



To isolate the risk premium component, we use a technique similar to the one in Gilchrist

and Zakrajsek (2013) as we project CDS spreads onto the expected loss component. The

projection is run separately for each FOMC announcement, using CDS and expected loss

data on the prior day.

The residual of this regression is our proxy for the firm-level credit risk premium. Given

the expected loss (EL) and the risk premium (RP) measures, we calculate terciles (bottom

33%, middle 33%, and top 33%) using their distribution the day before the FOMC an-

nouncement and classify stocks in nine (3 × 3) categories. These categories go from the one

including firms jointly in the bottom tercile of the expected loss and risk premium distri-

butions (EL1RP1) to the one including firms jointly in the top tercile of both distributions

(EL3RP3). The main specifications is given by:

∆yit = β0 +
3∑

k=1

3∑
j=1

βELkRPj

(
1
ELkRPj

i,t−1 × εmt
)

+ β′XXi,t−1 + τt + errorit (5)

where 1
ELkRPj

i,t−1 is a dummy variable that takes value of 1 if firm i belongs to tercile k

(k = 1, 2, 3) of the expected loss distribution and tercile j (j = 1, 2, 3) of the risk premium

distribution the day before the time t FOMC announcement. In the regression model,

we exclude firms belonging to the category EL1RP1, so the estimated coefficients are the

additional effect of monetary policy shocks relative to firms with the lowest expected loss

and risk premium values.

The results are displayed in Table 11. The first 3 columns focus on the response of credit

risk, as measured by changes in CDS spreads, while columns 4 to 6 focus on the response of

equity prices, as measured by the 2-day return following the FOMC announcement. Table

11 shows that firms with a high expected loss are the ones displaying a significantly higher

increase in CDS spreads following a contractionary monetary policy shock. Among high

expected loss firms, the ones that also have a high risk premium generate a much larger

response. For these firms, the estimated coefficients are very close to the estimated values

in Panel B of Table 5, thus signaling that both expected loss and risk premium matter for

the transmission of monetary policy shocks in CDS markets.

We reach a different conclusion when we consider the response of equity prices (columns

4 to 6). Analogous to movements in CDS markets, firms with a high expected loss are

generally the ones that display a significantly larger decrease in equity prices following a

contractionary monetary policy shock. Different than the CDS market however, credit risk

premium does not play any role in amplifying the equity response of high expected loss firms.

This result leads us to conclude that heterogeneity in credit risk premium plays a marginal
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role in equity markets, where the response to monetary policy shocks is mostly dictated by

the level of expected default.

4.4 Application to COVID-19 Crisis

Beyond its harmful impact on public health and real economic activity, the COVID-

19 pandemic caused a large disruption in financial markets. The month of March was

particularly damaging as large-cap U.S. equity markets lost 13% overall and reached a trough

of 25% month-to-date losses on March 23. Credit markets also displayed greater default risk

and investor risk aversion as the spread between the Moody’s BAA corporate bond yield

and 10-year Treasury rate reached a high of 4.3% on March 23. This was the largest level

going back over 5 years.

In the midst of this panic, there were a number of policy programs rolled out by U.S.

monetary and fiscal authorities to counteract negative headwinds. We focus our attention

on those enacted by the Federal Reserve Board on March 23, 2020. On that day the Fed

decided to inject tremendous amounts of liquidity into the financial system. These monetary

initiatives included but were not limited to: (1) open-ended purchases of Treasuries and

agency MBS (escalated from a previous announcement), (2) the establishment of primary

and secondary market corporate credit facilities, and (3) an expansion of the Money Market

Mutual Fund Liquidity Facility to include state and local municipal bond purchases.

These policy interventions were both large in scope and generally unexpected by market

participants, which makes them a useful event to better understand the transmission of

risk across the financial system, this time following an expansionary monetary policy. In

Figure 2 we display the behavior of 3 financial indicators (changes in CDS prices, EDF

probabilities, and equity returns) across credit risk categories, over a 1-day and 2-day horizon

directly following the policy announcement. It is evident from the top 2 panels that credit

risk as a whole decreased for all firms, but most clearly for the riskiest firms. Similarly,

firms in quintiles 4 and 5 are the ones that display the highest equity returns following the

announcement as shown in the bottom panel of Figure 2.

In Table 12 we perform a more formal analysis of the heterogeneous responses where we

project 2-day changes in each of the three variables (CDS, EDF, and equity returns), on

dummy variables of the lagged CDS risk quintile. Within each response variable, we have 3

regressions. The first examines the average response; the second looks at the response per

CDS risk grouping, by adding dummy variables corresponding to each quintile and excluding

the bottom category. The last regression adds leverage and lagged (log) market size as control

variables. All regressions use standard errors clustered at the industry level.
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Columns 1, 4, and 7 display that the average response of these markets was strongly

positive. CDS and EDF values reduced 23 and 16 basis points, respectively. Meanwhile

stocks on average yielded 16% on the day following the policy action. Columns 2, 5, and

8 statistically confirm the message from Figure 2, which is that firms in the highest CDS

quintiles were those that displayed the most amplified response to the policy action. These

responses are robust to controlling for lagged leverage and market size (columns 3, 6, and

9).

In summary, firms that were riskier, as judged by their CDS levels in the last trading day

before the March 23 announcement, were those that were most affected by the monetary

initiatives put in place by the Federal Reserve. It is difficult to say that this impact was

causal and perfectly identified, as a fiscal stimulus package was soon to be passed, and there

were daily announcements regarding the state of the pandemic. That being said, due to

the timing and the sheer magnitude of the monetary policy action, CDS spreads, expected

default probabilities, and equity prices moved in the expected directions across credit risk

categories.

5 Model

In this section, we discuss a stylized model of corporate leverage, investment, and mon-

etary policy. Our goal is to provide a plausible mechanism that can help us understand the

patterns displayed in the empirical analysis section. We particularly focus on two results: (1)

the heterogeneity in response of firm credit risk to monetary policy and (2) the irrelevance

of firm leverage in explaining this response, once we account for credit risk. To keep the

model simple and transparent we limit it to 3 periods. In many ways, our model is similar to

the one in Bhamra, Fisher, and Kuehn (2011), however we allow for endogenous investment

and leverage. In what follows, we show how endogenous investment plays a key role toward

generating the heterogeneity in monetary policy response.

5.1 Timeline and Structure

Over the course of a 3-period horizon (t = 1, 2, 3), a heterogeneous set of firms maximize

the expected present value of nominal cash flows. The expectations are necessary to take

into account 3 sources of uncertainty: variation in idiosyncratic productivity (ait), variation

in aggregate productivity (At), and potential shocks to monetary policy, (St). In the model,

all shocks are assumed to follow AR(1) processes with persistence parameter ρ and volatility
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parameter σ:

ait = ρaa
i
t−1 + σaε

i
a,t

At − µA ≡ Ãt = ρAÃt−1 + σAεA,t

St = ρSSt−1 + σSεS,t

(6)

where Ã represents the demeaned value of aggregate productivity. All of these variables are

accounted for in the firm’s decision to finance investment through leverage and influence

the firm-level credit spread. The presence of the firm-level productivity shock ai ensures

heterogeneity in investment and financing choices.

Period 1

At the start of the initial period, each firm begins with 1 unit of capital (ki1 = 1 for all

i) and draws a random, idiosyncratic shock from a stationary distribution of productivity

(ai1 ∼ Φa (a)). Similarly, aggregate variables (At, St) are also drawn from their stationary

distributions. Based on the initial state, each firm decides to invest in additional capital,

seeking to maximize the sum of a current dividend (Di1) and the discounted value of Period

2 cash flows.

More explicitly, the firm’s decision problem is given by:

V1
(
A1, S1, a

i
1, k

i
1

)
= Max
{k2}

Di1 +E1 [Mn
2Wi,2]

subject to:

Wi,2 = Max {0, Vi,2}

Di1 ≥ 0 (No equity issuance)

Di1 = Πi1 − ii1 − ϕk1(ki1, ii1)ki1︸ ︷︷ ︸
Adj. Costs to Capital

+τδki1

(7)

where Mn
2 represents the nominal stochastic discount factor (SDF) used to value future cash

flows. While this SDF does not come from a particular agent’s preferences, it can be thought

of as a market-based pricing kernel that firms utilize.12 Wi2 represents the realized Period 2

value of the firm, bounded below by limited liability upon potential exit. Finally dividends,

Di1, consist of firm profits (Π), net of investment (i) and adjustment costs to investment

12The use of an “exogenous” pricing kernel is a popular technique in models of corporate finance and asset
pricing. Models that use this approach can be found in Chen (2010) and Kuehn and Schmid (2014), among
many others. The key benefit from such an approach is that the parametric modeling of the pricing kernel
can help capture key features in the data, without having to close the model in general equilibrium.
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(ϕk1(·)× k1), plus a capital depreciation tax shield with tax parameter τ and depreciation

parameter δ.

There are a few things to note. First, all variables – dividends, profits, investment,

etc. – represent nominal values. While this seems non-standard relative to the literature

predicated on real decision making, the above problem can be recast as one where variables

are normalized by their appropriate price levels and effectively real.13 Secondly, to keep

things simple, firms cannot issue equity or save cash. Finally, it is natural to ask why

this initial stage exists in the model given there is no leverage decision to begin with. The

purpose of the first period is to generate heterogeneity across firms before they access capital

markets in Period 2. Adding leverage would help to generate dispersion across firms, but it

also clouds the setup of the second period, which we use to test the effects of an interest rate

shock due to monetary policy.

Period 2

After operating 1 period, firms have the opportunity to exit if the market value of contin-

uing operations reaches its lower bound (i.e. Vi2 ≤ 0). If they choose to continue operations,

firms now have the ability to take on debt to finance investment by engaging with financial

intermediaries.

The debt contract is structured as follows. For a chosen amount of debt bi3 at time 2,

firms owe a face value of (1 + c)bi3 at time 3, while receiving market proceeds pi2bi3 at time

2. Implicitly, pi2 will reflect the market priced credit risk of firm i. The pricing of the debt

contract is set to break even:

pi2bi,3 = E2

[
Mn

3 (1− 1{Di3>0})(1 + c)bi,3
]

+E2

[
Mn

3 1{Di3<=0}X
PD
i,3

]
(8)

In the above formula the left hand side reflects the time 2 proceeds lent to an individual

firm. Meanwhile the right hand side is a probability weighted sum of the discounted value

of (1) proceeds given no default and (2) proceeds given default. Note that the default event

takes place when Di3 ≤ 0 as the third period is the final one and there is no continuation

value (i.e. remaining dividend proceeds are remitted to shareholders or creditors). Further,

if default was to occur, the payment given default is defined as XPD
i3 = (1 − ξ)(1 − δ)ki3,

where ξ represents a fractional loss of depreciated capital in period 3.

The realized final period cash flows will be D3 = D (a3, A3, S3, k3, b3), where the first 3

variables are exogenous states and the last 2 are endogenous states (capital and debt chosen

as of time 2). We can show that the price on a corporate bond with maximum payoff (1+c)bi3

13Solving the nominal problem is one-to-one with a real version. See Appendix B for details.
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satisfies:

p2 = p (a2, A2, S2, k3, b3) (9)

Upon interacting with financial markets, firms are offered an entire price or interest rate

schedule that contracts on next period chosen capital and debt. The latter quantities are

observable to banks. The firm internalizes this price schedule and chooses capital and debt

to maximize:

V2
(
A2, S2, a

i
2, k

i
2

)
= Max
{k3,b3}

Di2 +E2 [Mn
3Wi,3]

subject to:

Wi,3 = Max {0, Di,3}

Di2 ≥ 0 (No equity issuance)

Di2 = Πi2 − ii2 − ϕk2(ki2, ii2)ki2 + pi2bi,3︸ ︷︷ ︸
Debt Proceeds

+τδki2

pi2bi,3 = E2

[
Mn

3 (1− 1{Di3>0})(1 + c)bi,3
]

+E2

[
Mn

3 1{Di3<=0}X
PD
i,3

]
(10)

Similar to the previous period, firms account for the present value of future cash flows,

although now it is simply a dividend payment at period 3. Firms now have an incentive to

take on debt due to its tax shield and they trade off this incentive with a borrowing cost

that increases with the size of debt. While our main goal is to generate cross-sectional risk

in credit spreads through this mechanism, such a tax vs. distress cost tradeoff is common in

the literature (see e.g., Hennessy and Whited (2005)). There is again no equity issuance or

savings, and dividends include a term accounting for debt proceeds.

Period 3

The final period involves no decision making. Upon realizing idiosyncratic and aggregate

shocks, the firm operates, liquidates capital, and repays debt (if possible). Cash flows to

equity holders are given by:

(No Default) Di,3 = Πi,3 + (1− δ)ki,3 − (1 + c)bi,3 + τ (δki,3 + cbi,3)

(Default if Di,3 < 0) 0
(11)

If the firm does not default (top line), equity holders receive profits and un-depreciated

capital, repay the face value of corporate debt and receive a tax shield on depreciated capital

and debt coupon payments. Conversely if the firm defaults, equity holders are wiped out

and creditors receive un-depreciated capital net of deadweight losses (XPD).
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5.2 Discount Factors, Monetary Policy, and Inflation

In this subsection we describe how monetary policy and inflation are determined. These

two quantities drive the the nominal stochastic discount factor that firms and intermediaries

use for asset valuation.

In our model economy, market participants use the following real, exogenous pricing

kernel:

M r
t = exp (mr

t ) = exp (m0 −mA (At − µA)−mSSt) (12)

By construction, M r
t is always positive and is a function of the de-meaned aggregate risk,

At, and the monetary shock, St. The market prices of risk, mA and mS, determine the

sensitivity of credit spreads to aggregate shocks (including monetary policy). We introduce

monetary policy in the model by imposing a Taylor rule, that the central bank adopts to set

the short-term nominal 1-period interest rate in the following manner:

y1t = i0 + αA (At − µA) + απ (πt − µπ) + St (13)

where the short-term yield, y1t is a linear function of growth and inflation, with the addition

of a persistent interest rate shock term (St).

Taking a similar approach as many endowment models (see e.g., Gallmeyer, Hollifield,

Palomino, and Zin (2017) and Song (2017)), we use the Euler equation restriction applied to

a 1-period nominal risk-free security, to back out an endogenous process for inflation. More

specifically:

prft = Et

[
M r

t+1

1

Πt+1

]
=

1

exp (y1t )
(⇔) y1t = − logEt

[
exp

(
mr
t+1 − πt+1

)]
(14)

where prft represents the risk-free price on a short-term nominal bond. Using the conditional

log-normality of the nominal SDF we can arrive at two main results.

Proposition 1. Inflation (πt) is endogenous and a linear function of productivity and the

interest rate shock. As a result, the nominal SDF is also linear in these states.

To show the first result, one can guess and verify the following inflation process, πt =

π0 + πAÃt + πSSt. Matching coefficients from the Taylor rule on the left hand side will yield

24



the following solution to the inflation coefficients. For more details, see Appendix C.

πS =
1−mSρS
ρS − απ

πA =
αA −mAρA
ρA − απ

π0 = i0 +m0 +
1

2
(mA + πA)2 σ2

A +
1

2
π2
Sσ

2
S

(15)

Given the linearity of the inflation process, the nominal log SDF becomes:

mn
t+1 = mr

t+1 − πt+1

= (m0 − π0)− (mA + πA) Ãt+1 − (mS + πS)St+1

(16)

Equation 16 implies that any (nominal) risk premium for an asset is based on that asset’s

return covariance with these last 2 shock terms Ãt+1 and St+1.

Proposition 2. Suppose firms hold their policies fixed and there is a positive interest rate

shock (↑ St). Corporate bond prices drop and yields increase if and only if the real SDF is

significantly sensitive to the interest rate shock. This required level of significance is measured

by a threshold m, for which mS must be greater than m.

Recall from a previous discussion that the bond price in (8) can be rewritten as follows:

pi2 = E2

[
Mn

3 (1− 1{Di3>0})(1 + c)
]

+Et

[
Mn

3 1{Di3<=0}
XPD
i,3

bi3

]

Holding firm policies and other non-monetary policy shocks fixed, the payoffs in both parts

of the corporate bond price do not fluctuate as a result of an interest rate shock. In order

for prices to move, Mn
3 must be sensitive to S2. Hence, corporate bond yields and credit risk

only increase (i.e. pi2 ↓) if mn
t+1 is negatively affected by St. For this to be the case we need:

mS + πS > 0 (⇔) mS > m ≡ 1

απ
. (17)

This restriction plays a crucial role in the calibration as will be explained shortly.
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5.3 Calibration

There are a number of processes in the model section that we need to specify. After-tax

firm profits are given by:

Πit = (1− τ)
(
e(Ãt+ait)kαit

)
for t = 1

Πit = (1− τ)
(
e(Ãt+ait)kαit − f

)
for t = 2, 3

In both periods after-tax profits are decreasing returns to scale in capital. Production,

however, requires a fixed cost (f > 0) only in the second and third period. The purpose

behind this choice is that a large enough f serves as a convenient way to generate default and

credit spreads. Also, with no costs in the first period, there are no firms that will default

immediately, which simplifies the setup. Investment and adjustment costs to capital are

given by:

iit = ki,t+1 − (1− δ)kit

ϕkt (kit, iit) =
φkt
2

(
iit
kit
− δ
)2

=
φkt
2

(
ki,t+1

kit
− 1

)2

where δ is the depreciation rate and φkt are time-dependent parameters. We set the quarterly

depreciation rate to 2.5%. Without any adjustment costs, the firms’ average level and

volatility of investment are both extremely large. Further, if the 2 parameters are set to be

equal (φk1 = φk2), investment behavior is greatly different across the 2 periods.14

Table 13 describes the calibrated parameters. While the model features a stylized 3-period

setup and is designed to display a mechanism, some parameters are guided by quarterly data.

The steady state interest rate, i0 is set to equal the quarterly nominal interest rate (roughly

1.1% in the data). The Taylor rule coefficients on productivity and inflation are roughly

equal to those in the data.15 The autocorrelation of idiosyncratic productivity is relatively

large (ρa = 0.85) to generate persistent heterogeneity and is similar to the value in Kuehn

and Schmid (2014). St is also persistent (ρS = 0.50) so that it is a priced state variable and

can generate larger asset pricing impulse responses. The value of ρA is 0.50 yet as we will

show, plays an inconsequential role for our study.

The conditional volatilities of aggregate productivity and monetary policy (σA and σS)

14If the model were extended to larger, fully dynamic setting, one parameter would control investment
adjustment costs. We would be able to more easily control investment behavior.

15We regress three-month Treasury bill rates on the growth rate of productivity (from the San Francisco
Federal Reserve) and Core CPI inflation to recover plausible coefficient values.
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are chosen to roughly match the data.16 Conditional idiosyncratic volatility (σa) is chosen

along with the adjustment cost parameters to generate reasonable cross-sectional dispersion

in investment rates. The returns to scale parameter, α = .65, is similar to the estimated

value in Hennessy and Whited (2007). The fixed costs of production, f = 1.10 is set to

generate reasonable levels of final period default. Adjustment cost parameters (φk1, φk2)

target average levels of investment of 10% per period. Finally, coupon rates, which do not

affect credit spreads, are set to be positive (c = .01) to generate a tax advantage of debt.

Credit Spread Schedule and the Price of MP Risk

A key parameter in our setup is the real market price of risk associated with interest rate

shocks, mS.17 To better understand its role towards credit spreads, we explore debt pricing

dynamics in Figure 3. The y-axis reports the credit spread associated with a particular

debt choice (high, medium, or low values of bi3) for various choices of capital on the x-axis

(different values of ki3). We hold fixed idiosyncratic and aggregate cash flows shocks to

their median values, and vary monetary policy shocks from median (solid line) to elevated

(dashed) states. A couple of intuitive results hold: (1) greater amounts of debt lead to higher

credit risk, holding capital fixed and (2) lower amounts of investment increase credit risk,

holding debt fixed. When the economy witnesses an interest rate shock, credit spreads or

credit risk increase. This is represented by a shift from a solid line to a dashed line. It is

also apparent that firms that originally choose higher levels of debt witness a larger increase,

when compared with those who choose lower debt levels.

To crystalize the role that mS has on the relative monetary policy impact, and the

rationale behind our mS calibration, in Figure 4 we plot the precise difference between the

dashed and solid lines following a policy shock. In the top-left figure, where mS is at the

baseline value, we see that the impact of a shock is greatest for firms with greater leverage

(i.e. fixing capital and moving vertically). For a firm that takes on 0.8 units of capital and

high levels of debt, a high value of mS leads to a monetary policy impact of 15 basis points.

These dynamics shift if we examine impulse responses under a lower monetary policy

price of risk (mS = 5), as given in the upper-right figure. Here we see that the effect of

monetary policy is weakened and for the same 0.8 units of capital and high levels of debt,

the increase is now 5 basis points. Finally, in the bottom figure, we set mS = m, the

threshold value from Proposition 2. In this scenario the response is non-existent.

In summary, the effects of monetary policy are highly tied to mS – the extent to which

16Given persistence parameters and data volatilities we can choose values for each σ. Data for S is given
to us through Taylor rule residuals.

17While mA would play a larger role in a larger simulation, it is not crucial here due to our focus on
monetary policy. We show later in this section that the results are robust to different values of mA.
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investors price monetary policy in their real pricing kernel. It is important to mention that

the results presented above are from a “partial equilibrium” thought experiment. They keep

firm policy functions fixed as we examine the impact on credit risk. In the next subsection

we examine equilibrium effects and heterogeneity.

5.4 Quantitative Results

To better assess the model ability to replicate some of the empirical findings, we simulate

and examine firm-level cross-sectional moments using an artificial panel of 10, 000 firms.

Throughout the baseline simulation we keep monetary policy and aggregate productivity at

their steady state values, throughout all 3 periods. The results of the simulation are provided

in Table 14. In the first period, firms invest 10.2% on average with a cross-sectional standard

deviation of 3%. As we would expect, investment rates are highly tied to productivity. Due

to the lack of fixed costs, there is no realized default.

In the second period, firms have the ability to access capital markets and they take on

quite a bit of leverage, roughly 68% to finance investment. The average credit spread on the

debt is 8.2 basis points and serves as our measure of credit risk.18 The ex-ante probability

of default also takes on a distribution with an average value of 3.82%. Relative to the

data, one might think that priced credit risk is relatively low and default rates are relatively

high. This is a common issue among models without significant curvature in the SDF or

risk neutral probability adjustment, as a greater number of defaults are needed to generate

larger spreads. In our model economy, we abstract from such quantitative issues.

One important characteristic to note is that the model creates a strong link between

investment rates and leverage (91% correlation from Table 14). The firms that choose to

invest more fund their capital expenditures using significantly more leverage. Figure 5 helps

understand this strong correlation. Across all panels the x-axis represents Period 2 firm-

value. As the latter quantity approaches 0, firms are closer to default. In the top panel,

we see that leverage decreases substantially as value diminishes. Because value is positively

linked to capital stocks and investment rates, a natural positive correlation emerges.

The two other panels in Figure 5 display the behavior of asset prices. As firms get

much closer to default through lower market values, likely due to poor productivity and a

diminished capital stock, their ex-ante default probabilities dramatically increase (see bottom

panel). This increase in default probability then manifests itself in asset prices through very

18While in real life there are small differences in the pricing of CDS and corporate credit spreads (often
referred to as the CDS-bond basis), in the model there would be no difference, due to the perfect and
complete nature of information. Model-based credit spreads serve as a perfect barometer of credit risk. We
compute them as: 1+c

pi2
− 1+c

E2[Mn
3 (1+c)]

. The latter reflects the gross yield on a risk-free security.
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large credit spreads (middle panel).

Effects of an Unexpected Interest Rate Shock

We now test the effects of a positive interest rate shock due to monetary policy. In

terms of the simulation procedure, we re-simulate the economy keeping all idiosyncratic and

aggregate shocks the same. However, we change one thing – we positively shock S2 by 1%.

Based on the baseline and “impulse” economies, we take the difference of firm activity in

the second period to understand the impact of monetary policy. Note that Period 1 values

do not change, as the interest rate shock is kept at steady state (S1 = 0) in both economies.

Table 15 displays the effects of a monetary shock on some moments of interest. The

first column (Baseline) reports the baseline economy values, the second column (MP Shock)

embeds the monetary shock, and the third shows the difference of the two. It is worth

mentioning that the Baseline values in Table 15 do not match those from Table 14. That

is because we select firms to compute relevant statistics, conditional on them not defaulting

at the start of period 2 across both simulations. As the economy with the MP innovation is

inherently riskier, we end up paring down some firms in the baseline economy that were on

the riskier end, and do default in the shocked economy. This explains, for example, why the

credit spread is lower in the joint sample as opposed to the earlier simulation.

In terms of the actual response, on average, firms reduce investment rates by 3% (of

starting capital) following the monetary shock, which accompanies a slight reduction of

leverage. The reduction of capital stock leads credit spreads to increase by 3.7 basis points.

This result is directly consistent with the empirical analysis. The standard deviation of

credit risk also increases, suggesting that the right tail of credit spreads is becoming wider.

The increase in credit spreads coincides with a 82 basis point increase in the ex-ante default

probability.

To better understand the mechanism of the model we can explore the impact of various

parameter choices on the impulse responses discussed in the prior paragraphs. These results

are presented in Table 16. We examine the same moments as previously and the second

column of the table (Baseline Change) matches the last column of Table 15. The first set of

tests we conduct are to look at the equilibrium effects of the monetary policy price of risk,

mS. In this case, the effect of mS on the debt pricing schedules takes into account firm-level

equilibrium choices of debt and capital.

In columns 3 – 5 of this table, we now incorporate their optimal decision making. The

first column (mS = 16), in which the MP price of risk is greater than the baseline value of mS,

we see that the credit spread increase due to the policy shock is larger relative to the baseline

(5.0 vs. 3.7 basis points). So too are the drop in investment rate (3.8 vs. 2.9%), increase in
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default ex-ante probability, and realized default rate. In the second column (mS = 5), we

reduce the price of risk below the value of the baseline, and the direction goes the other way.

Here, credit spreads only increase at a rate of 1.3 basis points. Finally we show that when

mS = m there is no effect on quantities and prices, as we would have expected. In summary,

these counterfactuals suggest that intermediary risk aversion towards policy shocks (mS)

plays a crucial role toward the ability of firms to optimally respond to policy. Another clear

message from these counterfactuals is that fluctuations in the response of credit spreads to

interest rate shocks are highly tied to the investment channel. It is the reduction in firms’

cash-flow generating process due to disinvestment that brings firms closer to default.

In columns 6 – 9 we examine other variables of interest. For higher values of the per-

sistence of policy shocks (↑ ρS in column 6), while fixing the volatility of S, we see that a

monetary policy shock increases the credit spread response dramatically. This is intuitive as

we have increased the likelihood of future interest rate hikes following a current shock. The

same happens when the fixed cost increases (↑ f in column 7). In this case, firms are more

likely to default given that the cash flow process stays the same. In the final two columns

of the table we show that shifts in variables related to aggregate productivity (↑ mA and

↑ ρA) do not matter much for the results. This makes sense as the simulation design held

aggregate risks constant.

Heterogeneous Responses

A significant portion of our empirical analysis discusses the heterogeneous response of

CDS to monetary policy. Our model economy also allows us to perform a similar analysis,

whose results are reported in Table 17. In each panel, we compare firms that make choices

in the baseline economy with their sister firms that do the same in the economy subject to

an increase in S2. The top panel sorts firms into quintiles based on their initial market value

(Q5 represents the firms with the lowest market values in the baseline economy). The second

panel does the same based on a sort of their initial credit spread (Q5 represents the firms

with the highest credit spreads in the baseline economy). Finally the bottom panel performs

the sort based on leverage (Q5 represents firms with the highest leverage). In essence, the

sorts align with our priors on risk – lower market values, higher credit spreads, and higher

leverage lead to greater risk. Within each panel and each quintile, we examine the percentage

change in investment, leverage, market values, and asset prices by comparing a firm in the

baseline environment with its counterpart in the shocked policy environment.

The top panel presents a stark image. While credit spreads have gone up by 3.7 basis

points, the bulk of the increase is among the riskiest firms – those in Q5 – who display an

average increase of 16.5 basis points. Why does this take place? Upon seeing an increase
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in bond yields due to the monetary shock, firms are required to cut back on leverage and

investment. While the reduction in leverage helps firm value, cutting back investment has

a large impact on market valuations and distance to default. This manifests itself as those

firms in Q5 post the largest decrease in market value (-26.8%). When we sort on credit

spreads a similar picture emerges. Firms that ex-ante had the highest credit spreads display

the largest increase in credit spreads (12.2 b.p.) following the monetary policy shock. The

channel is exactly the same and mirrors the valuation sort.

Finally, the picture flips when we examine leverage. Those firms that have the most

leverage display a very small increase in credit spreads. That is because of the inherent self-

selection in the model. Firms that take on more leverage are not riskier in equilibrium. They

are the ones who are more productive and use leverage toward investment that generates

positive cash flows. Hence, shocks to aggregate states, such as interest rates and monetary

policy, do not have a strong impact on them due to their built-up capital buffers.

In summary, the model suggests that the response of credit risk (and equity returns) to

monetary policy is heterogeneous across risk categories. However the underlying measure of

risk matters. While sorts on ex-ante credit risk operate as we would expect them to, leverage

is a less clean measure, because it is tied strongly with cash flow-yielding investment. This

latter insight in the model might also explain, in the data, why CDS is more influential than

leverage for the transmission of monetary policy.

6 Conclusion

Using high-frequency data related to credit risk (CDS) and monetary policy (unexpected

interest rate shocks surrounding FOMC days), we show that movements in monetary policy

significantly affect credit risk. Consistent with recent evidence, we also find that there is

significant heterogeneity in the sensitivities of firm-level credit risk and equity price response

to monetary policy. Firms that are ex-ante riskier, measured by spreads, leverage, or market

size, display greater sensitivites. More important, however, we show that CDS play a more

prominent role in determining monetary policy sensitivity. Our stylized model is able to

rationalize these findings on the basis of equilibrium self-selection.
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Figure 1. Monetary Policy Shocks
These figures display the monetary policy shocks used in the empirical analysis for the regularly scheduled
FOMC meetings from Wednesday, January 30, 2002, to Wednesday, June 19, 2019. The top figure reports the
“Target” and “Path” shocks, as initially discussed in Gürkaynak et al. (2005). The same figure also reports
the “LSAP” shock as constructed in Swanson (2020). The bottom figure reports the monetary policy shock
measure developed by Bu et al. (2019). In all figures the shaded area represents the zero-lower-bound (ZLB)
period while the dashed lines represent key monetary policy dates for QE1 (March 18, 2009), QE2 (November
3, 2010), and Operation Twist (September 21, 2011), respectively. Target, Path, and LSAP shocks are in
raw terms while BRW is in basis points. For more details regarding construction see the main text and
papers cited above.
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Figure 2. Financial Market Reaction to March Policy Action, by CDS Quintile
These figures display the 1- and 2-day financial market response of CDS prices, EDF (physical default)
probabilities, and daily equity market returns, following the March 23, 2020, policy announcement by the
U.S. Federal Reserve. Each panel reports a different response based on the median change within CDS
quintiles, sorted as of March 23. The top panel reports changes of 5Y CDS prices, in basis points. The
middle panel reports changes in the 5Y EDF measures. The bottom panel reports the day-after and 2-day-
after returns, in percentage points.
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Figure 3. Schedule of Credit Spreads
This figure display the credit spread schedule that is offered to firms in the second period, as implied by the
baseline set of parameters. Lines for chosen values of low, medium, and high debt are provided (blue, red,
and yellow respectively) and the x-axis throughout is the value of chosen capital. All shocks are kept at their
steady state values except for the dashed lines, which each account for a contractionary shock to monetary
policy. Credit spreads are in basis points.
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Figure 4. Difference of Credit Spreads following Monetary Shock
These figures display the difference in credit spread schedules, where one schedule accounts for a positive
monetary policy shock and the other is held at steady state. The upper left panel focuses on a model
environment where the real, market price of monetary risk is significantly positive (the baseline). The upper
right panel sets the real, market price of monetary risk to a lesser, negligible amount. Finally the bottom
most panel sets the price of risk to the threshold value described in the text, m. In each figure, various lines
for low, medium, and high debt are provided (blue, yellow, and red, respectively). In the case of the Baseline
panel, each line is the difference between the solid and dashed lines in Figure 3.
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Figure 5. Second-Period Decision-Making
These figures display the relationship between endogenous firm value and chosen leverage (top panel), re-
sulting CDS (middle), and ex-ante default probabilities (bottom). All values are simulated second-period
variables under the baseline calibration. The x-axis in all figures represents the firm value (market capital-
ization).
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Table 1. Monetary Policy Shocks – Summary Statistics
This table reports the summary statistics for the monetary policy shocks used in the empirical analysis:
Target, Path, LSAP, and BRW. Panel A reports the quantities over the entire sample. Panel B reports the
quantities in periods outside the Zero Lower Bound (ZLB) period. Panel C reports the quantities using the
ZLB period, which covers 2009-2015. The first 3 shocks are reported in raw terms while BRW is in basis
points.

Mean Std. Dev. Min Median Max Obs.

Panel A: Full Sample

Target 0.100 0.532 -2.759 0.139 1.812 145.0

Path -0.047 1.034 -3.266 -0.048 4.432 145.0

LSAP 0.014 0.699 -5.631 0.021 1.962 145.0

BRW (bp) -0.836 8.635 -40.113 -0.698 31.964 140.0

Panel B: No ZLB

Target 0.082 0.667 -2.759 0.132 1.812 90.0

Path -0.060 1.136 -3.266 -0.113 4.432 90.0

LSAP 0.045 0.426 -1.246 0.003 1.368 90.0

BRW (bp) 0.121 6.523 -14.131 0.319 21.703 85.0

Panel C: ZLB

Target 0.130 0.140 -0.534 0.143 0.465 55.0

Path -0.025 0.851 -2.419 0.042 1.804 55.0

LSAP -0.037 1.000 -5.631 0.142 1.962 55.0

BRW (bp) -2.315 11.048 -40.113 -2.326 31.964 55.0
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Table 2. Monetary Policy Shocks – Correlations
This table reports the correlations for the monetary policy shocks used in the empirical analysis: Target,
Path, LSAP, and BRW. Panel A reports the correlation matrix over the entire sample. Panel B reports the
matrix in periods outside the Zero Lower Bound (ZLB) period. Panel C reports the correlations using the
ZLB period, which covers 2009-2015.

* Significant at 10 percent; ** Significant at 5 percent; *** Significant at 1 percent.

Panel A: Full Sample

Target Path LSAP BRW

Target 1.000*** – – –

Path -0.084 1.000*** – –

LSAP 0.042 0.133 1.000*** –

BRW 0.223*** 0.517*** 0.204** 1.000***

Panel B: No ZLB

Target Path LSAP BRW

Target 1.000*** – – –

Path -0.107 1.000*** – –

LSAP -0.041 -0.157 1.000*** –

BRW 0.378*** 0.561*** -0.191* 1.000***

Panel C: ZLB

Target Path LSAP BRW

Target 1.000*** – – –

Path 0.078 1.000*** – –

LSAP 0.45*** 0.451*** 1.000*** –

BRW 0.061 0.582*** 0.348*** 1.000***

41



Table 3. Firm-level data – Summary Statistics
This table reports the firm-level summary statistics for the observations used in the empirical analysis. Panel
A reports data from Markit. For each firm, we report the the 5-year CDS spreads (in basis points), the
percentage of value recovered post-default (i.e. recovery rate), and the numbers of dealers providing CDS
quote contributors (i.e., composite depth). In Panel B, we report the annualized conditional probability of
default (EDF) from Moody’s Analytics. In Panel C, we report firm-level accounting data from Compustat.
Size is the nominal value of total assets (Compustat item atq in billion of dollars). Leverage is total debt
(item dlcq plus item dlttq) divided by total assets. cash-to-asset is cash and cash equivalents (item cheq)
divided by total assets. The log-change in quarterly property, plant, and equipment is the quarterly (log)
difference in net property, plant, and equipment (item ppentq). In Panel D, we report firm-level equity
market data from CRSP. Daily return FOMC is the daily market return on the FOMC announcement
day. Return around FOMC is the market return calculated over a 45-minute window around the FOMC
announcement (from 15 minutes prior to the announcement to 30 minutes after the announcement). Market
cap is the market capitalization at closing on the FOMC announcement day. All data are winsorized at the
top and bottom 0.5%.

Mean Std. Dev. Min Median Max Obs.

Panel A: Markit

5-year cds (bps) 187 281 9 90 2,301 54,886

recovery rate (%) 39.20 3.17 20.00 40.00 50.00 54,886

composite depth 5.73 3.60 2.00 5.00 33.00 54,886

Panel B: Moody’s

5-year expected default (%) 1.03 2.31 0.05 0.32 20.04 40,223

Panel C: Compustat

size ($ billion) 20.60 37.62 0.01 8.83 548.38 37,933

leverage 0.32 0.19 0.00 0.29 2.44 37,881

cash-to-assets 0.10 0.10 0.00 0.07 0.81 37,925

log change in PPENT 0.01 0.09 -1.10 0.00 1.52 37,686

Panel D: Equity Returns

Daily return FOMC (CRSP, %) 0.36 2.37 -7.30 0.17 11.60 36,598

Return around FOMC (TAQ, %) 0.04 1.06 -8.81 0.04 10.51 34,358

Market cap ($ billion) 26.17 50.74 0.02 9.91 1157.80 36,574
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Table 4. Credit Risk Response to Monetary Policy Shocks
This table reports the effect of the different measures of monetary policy shocks on movements in CDS and its expected loss component. For more
details regarding the specifications, see Equations (1) and (2) in the main text. In Panel A, columns 1 to 4 report the results using CDS changes as
the dependent variable and the four monetary policy shocks as key regressors. Columns 5 to 8 focus on movements in expected loss compensation
as the dependent variable. Columns 9 to 12 show the results for changes in CDS after we control for the contemporaneous change in expected loss
compensation. In Panel B, we include as controls the firm-level variables listed in Panel C of Table 3 and the (log) market capitalization the day
before the FOMC announcement day. We standardize monetary policy shocks so that all coefficients represent the change in CDS due to a 1σ change
in the monetary policy shock. In all regressions, we include firm fixed effects and cluster standard errors at the FOMC date level.

* Significant at 10 percent; ** Significant at 5 percent; *** Significant at 1 percent.

Panel A: Baseline

Dependent Variable ∆ CDS ∆ Exp. Loss ∆ CDS

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Target 0.926∗∗ 0.485∗∗ 0.753

(2.000) (2.613) (1.435)

Path 1.087∗∗∗ 0.329∗ 1.208∗∗∗

(3.501) (1.741) (3.796)

BRW 1.198∗∗ 0.596∗∗∗ 1.072∗∗

(2.469) (3.985) (2.285)

LSAP 0.045 -0.062 0.046

(0.092) (-0.209) (0.098)

∆ Exp. Loss 0.431∗∗∗ 0.429∗∗∗ 0.425∗∗∗ 0.443∗∗∗

(7.144) (7.559) (7.457) (7.366)

Obs 54,573 54,573 54,115 54,573 40,001 40,001 39,641 40,001 40,001 40,001 39,641 40,001

R2 0.023 0.025 0.027 0.016 0.031 0.027 0.036 0.024 0.064 0.071 0.070 0.060

S.E. FOMC date Y Y Y Y Y Y Y Y Y Y Y Y

Firm F.E. Y Y Y Y Y Y Y Y Y Y Y Y

Controls No No No No No No No No No No No No

43



Table 4. (Continued)

Panel B: Firm-level controls

Dependent Variable ∆ CDS ∆ Exp. Loss ∆ CDS

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Target 0.851∗ 0.479∗∗∗ 0.693

(1.814) (2.821) (1.329)

Path 1.094∗∗∗ 0.320∗ 1.180∗∗∗

(3.358) (1.800) (3.603)

BRW 1.257∗∗ 0.586∗∗∗ 1.043∗∗

(2.376) (3.525) (2.112)

LSAP 0.032 -0.108 0.030

(0.061) (-0.388) (0.065)

∆ Exp. Loss 0.440∗∗∗ 0.438∗∗∗ 0.436∗∗∗ 0.450∗∗∗

(7.187) (7.558) (7.633) (7.422)

Obs 36,280 36,280 35,978 36,280 33,549 33,549 33,247 33,549 33,549 33,549 33,247 33,549

R2 0.034 0.037 0.040 0.029 0.034 0.030 0.039 0.028 0.076 0.082 0.083 0.073

S.E. FOMC date Y Y Y Y Y Y Y Y Y Y Y Y

Firm F.E. Y Y Y Y Y Y Y Y Y Y Y Y

Controls Y Y Y Y Y Y Y Y Y Y Y Y
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Table 5. Cross-Sectional Credit Response to Monetary Policy Shocks
This table reports the heterogeneous effects of monetary policy shocks on credit risk, due to cross-sectionally varying levels of risk as determined by his-
torical CDS. For more details regarding the specifications, see Equation (3) in the main text. Panel A below refers to a set of regressions with a direct,
multiplicative term between monetary policy shocks and the one-day lagged CDS value. Meanwhile Panel B focuses on specifications that sort firms
into CDS risk quintiles based on data from the day prior, and interact these risk quintiles with monetary policy shocks. Within each panel, columns 1
to 3 report the results using CDS changes as the dependent variable. Columns 4 to 6 focus on movements in expected loss compensation as the depen-
dent variable. Columns 7 to 9 show the results for changes in CDS after we control for the contemporaneous change in expected loss compensation. In
Panel A, we standardize variables such that the coefficient on the interaction term represents the change in CDS due to a 1σ change in the monetary
policy shock, for a firm with 1σ larger historical CDS. In Panel B, coefficients represent the change in CDS due to a 1σ change in the policy shock,
conditional on the firm falling into that risk quintile. In all regressions, we include firm fixed effects and cluster standard errors at the FOMC date level.

* Significant at 10 percent; ** Significant at 5 percent; *** Significant at 1 percent.

Panel A: Direct Interaction Effects

Dependent Variable ∆ CDS ∆ Exp. Loss ∆ CDS

Target Path BRW Target Path BRW Target Path BRW

(1) (2) (3) (4) (5) (6) (7) (8) (9)

shockXCDS 0.608∗∗ 0.560∗∗ 0.679∗ 0.351∗∗∗ 0.362∗∗ 0.454∗∗∗ 0.464 0.578∗∗ 0.635

(2.049) (2.255) (1.686) (3.290) (2.193) (2.866) (1.546) (2.034) (1.561)

CDS lagged -0.009∗ -0.007 -0.006 -0.003 -0.001 -0.000 -0.010∗ -0.008 -0.007

(-1.862) (-1.316) (-0.977) (-1.171) (-0.586) (-0.004) (-1.882) (-1.347) (-0.991)

∆ Exp. Loss 0.331∗∗∗ 0.331∗∗∗ 0.327∗∗∗

(6.925) (7.181) (6.991)

Obs 54,573 54,573 54,115 40,001 40,001 39,641 40,001 40,001 39,641

R2 0.137 0.136 0.139 0.106 0.105 0.110 0.174 0.174 0.178

S.E. FOMC date Y Y Y Y Y Y Y Y Y

Firm and Time F.E. Y Y Y Y Y Y Y Y Y

Controls No No No No No No No No No
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Table 5. (Continued)

Panel B: Non-Linear Interaction Effects

Dependent Variable ∆ CDS ∆ Exp. Loss ∆ CDS

Target Path BRW Target Path BRW Target Path BRW

(1) (2) (3) (4) (5) (6) (7) (8) (9)

shockXCDS2 0.079 0.219∗∗∗ 0.189 0.042 -0.018 0.054∗ 0.102 0.266∗∗∗ 0.180

(0.544) (2.931) (1.395) (1.384) (-0.474) (1.793) (0.598) (3.058) (1.305)

shockXCDS3 0.255 0.405∗∗∗ 0.488 0.245 0.160 0.311∗∗∗ 0.163 0.445∗∗∗ 0.411

(0.869) (2.684) (1.509) (1.584) (1.284) (3.088) (0.479) (2.783) (1.318)

shockXCDS4 0.608 1.148∗∗∗ 1.102∗∗ 0.491∗∗ 0.247 0.627∗∗∗ 0.335 1.316∗∗∗ 0.928∗

(1.240) (3.252) (2.035) (2.173) (1.258) (3.448) (0.617) (3.757) (1.809)

shockXCDS5 2.452∗∗ 2.343∗∗∗ 3.152∗∗∗ 1.328∗∗∗ 0.915∗ 1.691∗∗∗ 2.124∗ 2.711∗∗∗ 2.769∗∗

(2.559) (3.162) (2.755) (3.125) (1.889) (3.709) (1.948) (3.479) (2.553)

∆ Exp. Loss 0.343∗∗∗ 0.343∗∗∗ 0.337∗∗∗

(7.056) (7.470) (7.316)

Observations 36,280 36,280 35,978 33,549 33,549 33,247 33,549 33,549 33,247

R2 0.153 0.153 0.158 0.110 0.107 0.117 0.184 0.186 0.189

S.E. FOMC date Y Y Y Y Y Y Y Y Y

Firm and Time F.E. Y Y Y Y Y Y Y Y Y

Controls Y Y Y Y Y Y Y Y Y
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Table 6. Cross-Sectional Equity Response to Monetary Policy Shocks
This table reports the heterogeneous effects of monetary policy shocks on equity returns, due to cross-
sectionally varying levels of risk as determined by historical CDS. The results below are determined
through a regression specification very similar to the second line of Equation (3) in the main text, with
equity returns as the dependent variable instead. Throughout the table, firms are sorted into CDS risk
quintiles based on one day lagged values of CDS spreads, and these risk quintile rankings are interacted
with monetary policy shocks. Columns 1 to 3 report the results using 1-hour equity returns surrounding
FOMC announcements, as the dependent variable. Columns 4 to 6 focus on movements in 2-day returns
surrounding the announcement. We standardize variables such that coefficients represent the % change in
equity returns due to a 1σ change in the policy shock, conditional on the firm falling into that risk quintile.
In all regressions, we include firm fixed effects and cluster standard errors at the FOMC date level.

* Significant at 10 percent; ** Significant at 5 percent; *** Significant at 1 percent.

Dependent Variable 1-Hour Return 2-Day Return

Target Path BRW Target Path BRW

(1) (2) (3) (4) (5) (6)

shockXCDS2 -0.028∗∗ -0.013 -0.025∗ -0.097∗∗ -0.089 -0.185∗∗∗

(-2.338) (-0.879) (-1.728) (-2.036) (-1.583) (-3.288)

shockXCDS3 -0.036∗ 0.005 -0.045 -0.231∗∗ -0.123 -0.345∗∗∗

(-1.905) (0.265) (-1.614) (-2.418) (-1.243) (-2.902)

shockXCDS4 -0.074∗∗ -0.025 -0.088∗∗ -0.256∗ -0.227∗ -0.423∗∗∗

(-2.266) (-0.766) (-2.456) (-1.847) (-1.820) (-3.407)

shockXCDS5 -0.150∗∗∗ -0.073 -0.155∗∗∗ -0.400∗∗∗ -0.413∗∗∗ -0.584∗∗∗

(-2.835) (-1.645) (-3.592) (-2.633) (-2.615) (-3.049)

ret lag 0.003 0.004 0.003 -0.035∗ -0.034 -0.036∗

(0.409) (0.499) (0.361) (-1.677) (-1.578) (-1.722)

Observations 29,594 29,594 29,594 36,279 36,279 35,977

R2 0.467 0.465 0.467 0.338 0.338 0.340

S.E. FOMC date Y Y Y Y Y Y

Firm and Time F.E. Y Y Y Y Y Y

Controls Y Y Y Y Y Y
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Table 7. Cross-Sectional Credit Response by Leverage
This table reports the heterogeneous effects of monetary policy shocks on credit risk, due to cross-sectionally varying levels of risk as determined
by historical leverage. For more details regarding the specifications, see Equation (4) in the main text. Columns 1 to 3 report the effects of
leverage directly interacted (multiplicatively) with policy shocks, on movements in CDS compensation due to expected losses. Columns 7 to 9
focus on the overall CDS, while controlling for contemporaneous movements in expected losses. Meanwhile, in columns 4 to 6 and 10 to 12,
regressions further include dummy interaction terms that are determined by 1-day lagged levels of CDS risk. For leverage interaction terms,
we standardize variables such that coefficients represent the basis point change due to an additional 1σ movement in leverage, following a 1σ
change in the policy shock. For dummy interaction terms, coefficients represent the basis point change due to a 1σ change in the policy shock,
conditional on the firm falling into that risk quintile. In all regressions, we include firm fixed effects and cluster standard errors at the FOMC date level.

* Significant at 10 percent; ** Significant at 5 percent; *** Significant at 1 percent.

Dependent Variable ∆ Exp. Loss ∆ Exp. Loss ∆ CDS ∆ CDS

Target Path BRW Target Path BRW Target Path BRW Target Path BRW

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

TargetXlev 0.213∗∗ 0.045 0.143 -0.133

(2.173) (0.649) (1.097) (-1.499)

PathXlev 0.121 -0.027 0.467∗∗ 0.084

(0.986) (-0.362) (2.425) (0.653)

BRWXlev 0.303∗∗ 0.0454 0.581∗∗ 0.213

(2.504) (0.662) (2.068) (1.09)

∆ Exp. Loss 0.352∗∗∗ 0.351∗∗∗ 0.352∗∗∗ 0.343∗∗∗ 0.343∗∗∗ 0.337∗∗∗

(7.348) (7.439) (7.441) (7.064) (7.475) (7.297)

shockXCDS2 0.037 -0.016 0.049∗ 0.117 0.259∗∗∗ 0.158

(1.242) (-0.441) (1.778) (0.663) (2.928) (1.107)

shockXCDS3 0.234 0.167 0.298∗∗∗ 0.195 0.426∗∗ 0.352

(1.467) (1.342) (3.197) (0.548) (2.546) (1.044)

shockXCDS4 0.460∗∗ 0.258 0.602∗∗∗ 0.425 1.281∗∗∗ 0.814

(2.07) (1.365) (3.692) (0.728) (3.731) (1.562)

shockXCDS5 1.276∗∗∗ 0.944∗∗ 1.638∗∗∗ 2.276∗∗ 2.620∗∗∗ 2.523∗∗

(3.172) (2.144) (4.021) (1.992) (3.568) (2.427)

Observations 33549 33549 33247 33549 33549 33247 33549 33549 33247 33549 33549 33247

R2 0.105 0.104 0.107 0.11 0.107 0.117 0.178 0.179 0.182 0.184 0.186 0.189

S.E. FOMC date Y Y Y Y Y Y Y Y Y Y Y Y

Firm and Time F.E. Y Y Y Y Y Y Y Y Y Y Y Y

Controls Y Y Y Y Y Y Y Y Y Y Y Y
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Table 8. Cross-Sectional Equity Response by Leverage
This table reports the heterogeneous effects of monetary policy shocks on equity returns, due to cross-
sectionally varying levels of risk as determined by historical leverage. The regressions are very similar to the
ones in Equation (4), with 2-day equity returns as the dependent variable instead. Columns 1 to 3 report
the effects of leverage directly interacted (multiplicatively) with policy shocks, on 2-day returns. Meanwhile,
in columns 4 to 6, regressions further include dummy interaction terms that are determined by 1-day lagged
levels of CDS risk. For leverage interaction terms, we standardize variables such that coefficients represent
the % return due to an additional 1σ movement in leverage, following a 1σ change in the policy shock.
For dummy interaction terms, coefficients represent the % return due to a 1σ change in the policy shock,
conditional on the firm falling into that risk quintile. In all regressions, we include firm fixed effects and
cluster standard errors at the FOMC date level.

* Significant at 10 percent; ** Significant at 5 percent; *** Significant at 1 percent.

Dependent Variable 2-Day Return 2-Day Return

Target Path BRW Target Path BRW

(1) (2) (3) (4) (5) (6)

TargetXlev -0.024 0.029

(-0.688) (0.939)

PathXlev -0.055 0.007

(-1.589) (0.232)

BRWXlev -0.058 0.026

(-1.531) (0.880)

ret lag -0.035∗ -0.034 -0.036∗

(-1.677) (-1.578) (-1.723)

shockXCDS2 -0.101∗∗ -0.0897 -0.188∗∗∗

(-2.073) (-1.597) (-3.314)

shockXCDS3 -0.238∗∗ -0.125 -0.352∗∗∗

(-2.454) (-1.235) (-2.900)

shockXCDS4 -0.274∗ -0.229∗ -0.437∗∗∗

(-1.882) (-1.786) (-3.468)

shockXCDS5 -0.430∗∗∗ -0.420∗∗∗ -0.613∗∗∗

(-2.859) (-2.641) (-3.152)

Observations 36,279 36,279 35,977 36,279 36,279 35,977

R2 0.336 0.336 0.336 0.338 0.338 0.340

S.E. FOMC date Y Y Y Y Y Y

Firm and Time F.E. Y Y Y Y Y Y

Controls Y Y Y Y Y Y
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Table 9. Cross-Sectional Credit Response by Market Size
This table reports the heterogeneous effects of monetary policy shocks on credit risk, due to cross-sectionally varying levels of risk as determined
by historical market size. The regressions are very similar to the ones in Equation (4), with market size replacing leverage. Columns 1 to 3 report
the effects of log market size directly interacted (multiplicatively) with policy shocks, on movements in CDS compensation due to expected losses.
Columns 7 to 9 focus on the overall CDS, while controlling for contemporaneous movements in expected losses. Meanwhile, in columns 4 to 6 and
10 to 12, regressions further include dummy interaction terms that are determined by 1-day lagged levels of CDS risk. For market size interaction
terms, we standardize variables such that coefficients represent the basis point change due to an additional 1σ movement in leverage, following a
1σ change in the policy shock. For dummy interaction terms, coefficients represent the basis point change due to a 1σ change in the policy shock,
conditional on the firm falling into that risk quintile. In all regressions, we include firm fixed effects and cluster standard errors at the FOMC date level.

* Significant at 10 percent; ** Significant at 5 percent; *** Significant at 1 percent.

Dependent Variable ∆ Exp. Loss ∆ Exp. Loss ∆ CDS ∆ CDS

Target Path BRW Target Path BRW Target Path BRW Target Path BRW

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

TargetXmrkt -0.420∗∗∗ -0.245∗∗∗ -0.166 0.375

(-2.979) (-2.728) (-0.913) (1.263)

PathXmkt -0.317∗ -0.198∗ -0.369∗ 0.422∗

(-1.873) (-1.663) (-1.677) (1.915)

BRWXmkt -0.545∗∗∗ -0.330∗∗∗ -0.462∗∗ 0.163

(-3.437) (-2.633) (-1.969) (0.569)

∆ Exp. Loss 0.351∗∗∗ 0.349∗∗∗ 0.348∗∗∗ 0.345∗∗∗ 0.345∗∗∗ 0.338∗∗∗

(7.293) (7.379) (7.313) (7.119) (7.471) (7.294)

shockXCDS2 -0.074∗∗ -0.131∗∗ -0.133∗∗ 0.28 0.506∗∗∗ 0.272

(-2.308) (-1.999) (-2.024) (0.979) (2.984) (0.993)

shockXCDS3 0.014 -0.033 -0.042 0.516 0.857∗∗∗ 0.584

(0.114) (-0.343) (-0.459) (0.866) (2.674) (0.972)

shockXCDS4 0.174 -0.0145 0.146 0.819 1.872∗∗∗ 1.165

(1.092) (-0.118) (1.121) (0.917) (3.484) (1.369)

shockXCDS5 0.849∗∗∗ 0.528∗ 1.007∗∗∗ 2.855∗ 3.534∗∗∗ 3.105∗∗

(3.154) (1.676) (3.499) (1.849) (3.799) (2.105)

Observations 33,549 33,549 33,247 33,549 33,549 33,247 33,549 33,549 33,247 33,549 33,549 33,247

R2 0.109 0.107 0.115 0.111 0.108 0.119 0.178 0.179 0.182 0.184 0.187 0.189

S.E. FOMC date Y Y Y Y Y Y Y Y Y Y Y Y

Firm and Time F.E. Y Y Y Y Y Y Y Y Y Y Y Y

Controls Y Y Y Y Y Y Y Y Y Y Y Y
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Table 10. Cross-Sectional Equity Response by Market Size
This table reports the heterogeneous effects of monetary policy shocks on equity returns, due to cross-
sectionally varying levels of risk as determined by market size. The regressions are very similar to the ones
in Equation (4), with 2-day equity returns as the dependent variable instead and market size replacing
leverage. Columns 1 to 3 report the effects of market size directly interacted (multiplicatively) with policy
shocks, on 2-day returns. Meanwhile, in columns 4 to 6, regressions further include dummy interaction
terms that are determined by 1-day lagged levels of CDS risk. For market size interaction terms, we
standardize variables such that coefficients represent the % return due to an additional 1σ movement in
market size, following a 1σ change in the policy shock. For dummy interaction terms, coefficients represent
the % return due to a 1σ change in the policy shock, conditional on the firm falling into that risk quintile.
In all regressions, we include firm fixed effects and cluster standard errors at the FOMC date level.

* Significant at 10 percent; ** Significant at 5 percent; *** Significant at 1 percent.

Dependent Variable 2-Day Return 2-Day Return

Target Path BRW Target Path BRW

(1) (2) (3) (4) (5) (6)

TargetXmkt 0.167∗∗∗ 0.133∗∗∗

(3.361) (3.610)

PathXmkt 0.110∗ 0.0253

(1.951) (0.626)

BRWXmkt 0.183∗∗∗ 0.099∗∗

(2.998) (2.263)

lagged return -0.033 -0.033 -0.036∗

(-1.610) (-1.569) (-1.743)

shockXCDS2 -0.0317 -0.0744 -0.130∗∗∗

(-0.586) (-1.573) (-2.823)

shockXCDS3 -0.108 -0.099 -0.241∗∗∗

(-1.166) (-1.311) (-2.849)

shockXCDS4 -0.0925 -0.194∗∗ -0.281∗∗∗

(-0.644) (-2.002) (-3.314)

shockXCDS5 -0.149 -0.365∗∗∗ -0.381∗∗∗

(-1.212) (-3.360) (-3.051)

Observations 36,279 36,279 35,977 36,279 36,279 35,977

R2 0.338 0.337 0.339 0.339 0.338 0.340

S.E. FOMC date Y Y Y Y Y Y

Firm and Time F.E. Y Y Y Y Y Y

Controls Y Y Y Y Y Y
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Table 11. Cross-Sectional Credit Response: Ex-Ante Default vs. Risk Premium Channel
This table reports the heterogeneous effects of monetary policy shocks on credit risk, due to cross-sectionally
varying levels of risk as determined separately by the expected loss upon default (EL) and the credit risk
premium (RP). For more details regarding the construction of these measures and exact specifications, see
Equation (5) in the main text. For all dummy interaction terms, coefficients in columns 1 to 3 (4 to 6)
represent the basis point (percentage) change due to a 1σ change in the policy shock. The variable N is the
number of firms in each category. In all regressions, we include firm fixed effects and cluster standard errors
at the FOMC date level.

* Significant at 10 percent; ** Significant at 5 percent; *** Significant at 1 percent.

Dependent Variable ∆ CDS 2-Day Return

Target Path BRW Target Path BRW

(1) (2) (3) (4) (5) (6)

shockX(EL1RP2) 0.011 -0.293∗∗ 0.165 -0.040 0.026 -0.050

(N=3,262) (0.030) (-2.416) (0.626) (-0.674) (0.468) (-0.943)

shockX(EL1RP3) -0.524 -0.167 -0.074 -0.266 -0.051 -0.184∗

(N=2,862) (-0.782) (-0.552) (-0.173) (-1.199) (-0.444) (-1.800)

shockX(EL2RP1) 0.124 -0.433∗∗ 0.104 -0.163∗∗∗ 0.028 -0.183∗∗

(N=4,356) (1.456) (-2.348) (0.894) (-2.815) (0.620) (-2.464)

shockX(EL2RP2) 0.245 -0.036 0.546∗ -0.300∗∗∗ -0.050 -0.443∗∗∗

(N=4,759) (0.749) (-0.260) (1.654) (-2.879) (-0.625) (-3.196)

shockX(EL2RP3) 0.703 0.166 1.049 -0.335 -0.079 -0.458∗∗∗

(N=1,996) (1.005) (0.311) (1.681) (-1.939) (-0.647) (-3.175)

shockX(EL3RP1) 0.0359 0.500 0.726∗∗ -0.583∗∗∗ -0.260∗∗ -0.657∗∗∗

(N=1,137) (0.141) (1.656) (2.489) (-3.182) (-2.188) (-3.564)

shockX(EL3RP2) -0.267 0.738∗ 1.500∗∗∗ -0.260 -0.257∗∗ -0.460∗∗

(N=3,360) (-0.769) (1.912) (2.813) (-1.360) (-2.079) (-2.322)

shockX(EL3RP3) 2.461∗∗ 2.369∗∗∗ 3.173∗∗∗ -0.549∗∗∗ -0.355∗∗ -0.627∗∗∗

(N=6,495) (2.235) (3.436) (2.682) (-2.933) (-2.241) (-3.026)

lagged return -0.032 -0.030 -0.034

(-1.500) (-1.350) (-1.597)

Observations 33,554 33,554 33,252 33,553 33,553 33,251

R2 0.161 0.162 0.166 0.351 0.350 0.353

S.E. FOMC date Y Y Y Y Y Y

Firm and Time F.E. Y Y Y Y Y Y

Controls Y Y Y Y Y Y
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Table 12. Financial Market Response to March Policy Action
This table reports the change in CDS (columns 1 to 4), expected default probabilities (columns 5 to 8), and equity returns (columns 9 to 12) after the
Federal Reserve Board’s announcement of a series of stimulus programs on March 23, 2020. For each variable, we calculate the change from March
23 to March 25, 2020. For each quantity, we run four regressions. In the baseline regression, we report the average change. In the second regression,
we control for CDS categories, calculated using quintiles based on the latest available CDS data prior to March 23, 2020. In the third regression, we
control for leverage. In the fourth regression, we also control for (log) market capitalization, calculated using the latest available data prior to March
23, 2020. * Significant at 10 percent; ** Significant at 5 percent; *** Significant at 1 percent.

Dependent Variable ∆ CDS ∆ EDF 2-Day Return

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Constant -22.51∗∗∗ -3.967∗∗∗ 92.18 -15.98∗∗∗ -1.367∗∗∗ -95.82 16.03∗∗∗ 10.90∗∗∗ 9.483

(-7.165) (-6.948) (1.117) (-5.031) (-4.010) (-0.965) (12.269) (4.157) (0.361)

dummy2 0.0419 -2.974 -3.362∗ 1.102 2.617 2.751∗

(0.039) (-0.540) (-1.900) (0.199) (1.522) (1.952)

dummy3 -2.324 -6.273 -7.705∗∗ 1.31 3.261∗∗ 3.531∗∗

(-1.167) (-0.734) (-2.656) (0.13) (2.959) (2.127)

dummy4 -19.20∗∗∗ -29.15∗∗ -13.94∗∗ -4.721 7.574 7.702∗∗

(-5.338) (-3.251) (-2.473) (-0.437) (1.453) (2.216)

dummy5 -64.09∗∗∗ -76.72∗∗∗ -42.64∗∗∗ -25.04∗∗ 10.70∗ 11.36∗∗∗

(-7.884) (-4.653) (-3.585) (-2.318) (1.875) (3.553)

Leverage -27.69 -10.04 -4.420

(-1.112) (-0.428) (-0.573)

Lagged size -3.556 3.946 0.120

(-1.006) (0.925) (0.100)

Observations 340 340 233 254 254 232 236 236 233

R2 0.000 0.197 0.199 0.000 0.140 0.146 0.000 0.081 0.076
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Table 13. Parameters and Calibrated Values
This table provides calibrated values for key parameters of interest in the model. For more details see main
text.

Parameter Notes Value

i0 steady state nominal int. 0.011
αa TR coefficient on agg productivity 0.1
απ TR coefficient on inflation 0.9

ρA AC1 of agg productivity 0.5
ρS AC1 of mon policy shock 0.5
ρa AC1 of idio productivity 0.85

σA conditional vol of agg productivity 0.007
σS conditional vol of mon policy shock 0.004
σa conditional vol of idio productivity 0.2

exp (m0) steady state real SDF 0.994
mA real market price of risk of agg productivity 0.5
mS real market price of risk of mon policy shock 12

α returns to scale parameter 0.65
f fixed costs of production 1.10
δ capital depreciation 0.025
φk1 capital adjustment cost, period 1 12
φk2 capital adjustment cost, period 2 5.75
τ corporate tax rate 0.25

c coupon rate 0.01
ξ capital losses upon default 0.4
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Table 14. Baseline Moments (No Shock)
This table displays simulated moments from the model, based on a panel of 10000 firms. Aggregate cash
flow and interest rate shocks are kept at steady state, while idiosyncratic shocks are simulated continuously.
The top panel focuses on the first period, the middle panel focuses on the second period where firms have
access to leverage, and the third period reports the realized default rate. For more details see main text.

Moment Value

First-Period

Avg i / k 0.102
Std i / k 0.03

Corr(i/k, prod) 0.929
Realized Def Rate (%) 0

Second-Period

Avg i / k 0.101
Std i / k 0.035

Avg b / k 0.682
Std b / k 0.11

Avg Credit Spread (b.p.) 8.161
Std Credit Spread (b.p.) 43.999

Avg Ex-Ante Def Prob (%) 3.82
Std Ex-Ante Def Prob (%) 14.246

Realized Def Rate (%) 0.17

Corr(i/k, prod) 0.924
Corr(b/k, prod) 0.907
Corr(Credit Spread, prod) -0.353
Corr(Credit Spread, value) -0.241
Corr(i/k, b/k) 0.803

Third-Period

Realized Def Rate (%) 3.666
Recovery Rate — Default 0.346
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Table 15. Aggregate Effects of Monetary Policy Shock
This table displays simulated moments from the model, based on a panel of 10000 firms, across two different
shock environments. In the first column (“Baseline”), aggregate cash flow and interest rate shocks are kept
at steady state, while idiosyncratic shocks are simulated continuously. In the second column (“MP Shock”),
aggregate and idiosyncratic cash flow shocks are exactly the same as before. However the interest rate
shock at time 2 is raised. The third column merely reflects the arithmetic difference between the 2 columns.
Underlying firms are fixed to be those that do not default across both simulations at the start of period 2.
For more details see main text.

Moment Baseline MP Shock Change

Second-Period Decisions

Avg i / k 0.102 0.073 -0.029
Std i / k 0.034 0.032 -0.002

Avg b / k 0.683 0.673 -0.01
Std b / k 0.111 0.106 -0.004

Avg Credit Spread (b.p.) 6.695 10.356 3.661
Std Credit Spread (b.p.) 35.845 59.045 23.2

Avg Ex-Ante Def Prob (%) 3.46 4.283 0.824
Std Ex-Ante Def Prob (%) 13.022 14.621 1.599

Realized Def Rate (%) 0.17 0.55 0.38
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Table 16. Comparative Statics of Monetary Policy Effects
This table displays the effect of various model parameter choices on the change in firms’ second period statistics due to monetary policy. The second
column (“Baseline Change”) displays the change in firm-level statistics under baseline parameters and mirrors the last column of Table 15. Columns
3 – 5 discuss shifting values of the monetary policy price of risk, mS . Columns 6 and 7 respectively increase the persistence of interest rate shocks
(ρS) and the fixed cost of production (f). The last two columns increase the price of risk with respect to the aggregate productivity shock (mA) and
the persistence of the aggregate productivity shock (ρA). Changes in firm statistics are computed from simulated model moments, based on a panel
of 10,000 firms, across 2 different shock environments. For more details see main text.

Moment Baseline Change mS = 16 mS = 5 mS = m ρS = .65 f = 1.30 mA = 1.00 ρA = .65

Avg i / k -0.029 -0.038 -0.01 0 -0.056 -0.03 -0.028 -0.029
Std i / k -0.002 -0.003 -0.001 0 -0.003 -0.001 -0.002 -0.002

Avg b / k -0.01 -0.013 -0.004 0 -0.016 -0.006 -0.01 -0.01
Std b / k -0.004 -0.006 -0.002 0 -0.01 -0.003 -0.004 -0.004

Avg Credit Spread (b.p.) 3.661 5.008 1.311 0 7.746 7.914 3.737 3.67
Std Credit Spread (b.p.) 23.2 18.478 6.125 0 39.065 27.651 23.192 23.215

Avg Ex-Ante Def Prob (%) 0.824 1.236 0.323 0 1.774 2.081 0.813 0.826
Std Ex-Ante Def Prob (%) 1.599 2.491 0.729 0 3.907 2.123 1.599 1.605

Realized Def Rate (%) 0.38 0.8 0.15 0 1.56 3.69 0.38 0.38
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Table 17. Distributional Effects of Monetary Policy Shock
This table displays percentage changes of simulated firm moments (investment, leverage, market value,
credit spreads, and default probabilities), based on firms within a particular sorting. The top panel sorts
on historical levels of market valuation. The second and third panels respectively sort on credit spread and
leverage. The percentage is computed by comparing a firm in the baseline environment with its own self in
the shocked policy environment (for more details see main text). The historical value is based on the level
of said variable in the baseline environment. Investment, leverage, and value are all in terms of percentage
point deviations. Credit spreads and ex-ante default probabilities are simple differences of variables.

Metric Q1 Q2 Q3 Q4 Q5 Average

Sorting on Initial Value (Left to Right, Increasing in Risk)

∆ Investment (% Chg) -2.936 -2.801 -2.057 -2.944 -2.695 -2.675
∆ Leverage (% Chg) -4.379 -5.325 -4.496 -2.722 -3.239 -4.032
∆ Value (% Chg) -9.37 -11.044 -12.797 -15.422 -26.791 -15.311
∆ Credit Spread (b.p.) 0.179 -0.056 -0.317 0.993 16.521 3.661
∆ Ex-ante Def Prob (%) 0.003 -0.002 -0.021 0.234 3.686 0.824

Sorting on Credit Spread (Left to Right, Increasing in Risk)

∆ Investment (% Chg) -2.918 -2.939 -2.28 -2.622 -2.638 -2.675
∆ Leverage (% Chg) -1.983 -4.114 -4.129 -5.531 -5.08 -4.032
∆ Value (% Chg) -14.88 -10.692 -12.408 -12.546 -25.571 -15.311
∆ Credit Spread (b.p.) 3.176 0.231 -0.101 -0.545 12.228 3.661
∆ Ex-ante Def Prob (%) 0.561 0.007 0.025 0.022 2.871 0.824

Sorting on Leverage (Left to Right, Increasing in Risk)

∆ Investment (% Chg) -2.86 -2.691 -2.161 -2.793 -2.967 -2.675
∆ Leverage (% Chg) -2.349 -4.391 -4.557 -5.211 -4.548 -4.032
∆ Value (% Chg) -21.031 -22.498 -12.688 -10.832 -9.217 -15.311
∆ Credit Spread (b.p.) 16.739 -10.193 -0.256 -0.035 0.1 3.661
∆ Ex-ante Def Prob (%) 2.079 2.002 -0.018 -0.003 0 0.824
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A Additional Results

• In Table A1, we show that monetary policy shock effects on CDS spreads are
mitigated when changes are measured using a longer future time horizon. This result
is in contrast to the positive and significant effect of monetary policy shocks on
weekly changes in credit ratings documented in Anderson and Cesa-Bianchi (2020)
and it is likely driven by the superior ability of the CDS market to reflect new
information.19 In column 1 to 3 of Table A1, we run the specification in Equation 1
using ∆ywit = yi,t+5 − yi,t−1 as the dependent variable, that is the difference between
the CDS spread 5 trading days after the FOMC announcement day and the CDS
spread the day before the FOMC announcement day (i.e., a weekly change). The
effect of monetary policy shock on weekly changes in CDS spreads is still positive,
but its magnitude is smaller and significance is marginal. The statistical significance
disappears if we control for (i) contemporaneous changes in expected default
(Columns 4 to 6) and (ii) the change in CDS spread observed during the first day
after the FOMC announcement day (Columns 7 to 9). These results make clear that
the marginal significance in Columns 1 to 3 is entirely due to changes in CDS spreads
during the first day after the FOMC announcement day. One way of interpreting
these results is that CDS markets price in monetary policy at a very fast pace,
perhaps even relative to traditional corporate bond markets.

• As discussed in Augustin et al. (2014) and Bai and Collin-Dufresne (2019) the
underlying liquidity of credit default swaps is one reason why CDS may differ from
corporate bonds, in terms of their priced credit risk (also known as a non-zero
CDS-bond basis). We examine whether liquidity has an effect on the heterogeneous
impact that interest rate shocks have on credit risk in Table A2. The Markit
database allows us to examine this through the number of dealers that provide a CDS
quote. We limit our sample to CDS observations with market depth greater than 5,
which is the median throughout the sample. In columns 1 to 3 of the Table it is
evident that the asymmetric impact of policy shocks is potentially stronger once we
place these limitations. Quintile 5 firms have close to a 4 basis point impact following
a standard deviation shock to monetary policy. Columns 4 to 6 echo this message,
using expected loss compensation as the dependent variable (.9 to 1.7 basis point
impact for the riskiest firms). Columns 7 to 9 suggest that despite limiting our
sample and choosing the most liquid, informative prices, policy shocks continue to
impact CDS through the risk premium channel as well.

• In an effort to understand the time-varying robustness of our results and the effect of
the ZLB, we examine the credit risk sensitivities to monetary policy within and
outside the ZLB period, defined as 2009 through 2015. Table A3 presents these
results. In Panel A, which focuses on movements in CDS surrounding FOMC
announcements, columns 1 to 3 all suggest that both Target and Path variables have
significant effects on CDS in the non-ZLB period. BRW shocks are economically, but

19The CDS market is more liquid than the bond markets and leads the latter in price discovery (e.g.,
Oehmke and Zawadowski (2017) and Lee et al. (2018), among others.).
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not statistically, significant. In columns 4 to 6 of the same Panel, in the ZLB period,
Target seems to be fully mitigated while the coefficient estimates on Path haven’t
changed dramatically. Interestingly, BRW is the only variable that shows up as
significant, which speaks to its value as a measure of unexpected LSAP-related
policy. Panels B and C show similar effects using the expected loss component and
credit risk premia as dependent variables. In summary it seems that within the ZLB
period, the reduced variability in Target and Path diminish their effects on credit
risk. Meanwhile longer-maturity changes in the term structure, as picked up by BRW
shocks in the ZLB, manifest themselves significantly in credit risk movements.

• In the main body of the paper, we test the ability of credit risk to better explain
cross-sectional heterogeneity in monetary policy responses relative to leverage and
market capitalization. In those specifications, leverage and market capitalization are
incorporated through direct multiplicative interaction terms with the policy shock
term. In Table A4 we instead use dummy variables classifying whether a firm-date
observation jointly falls within a particular tercile of credit risk (i.e., CDS) and tercile
of leverage (in total 9 such dummy variables). In Table A4, we show that within a
CDS tercile, leverage doesn’t play any relevant role on the monetary policy response,
while within a leverage quintile, credit risk certainly amplifies the response. Results
hold for both equity return and CDS responses, following the FOMC announcement.
We also conduct the same tests in Table A5, where we base the double-sorting on
CDS and market capitalization. Variables are ranked in increasing order, which
implies CDS3 and MKT1 (i.e., high CDS and small size) is the riskiest group. While
ranking increases in market capitalization do seem to have an effect, CDS continues
to be relatively significant. To a large extent, these results mirror those in the main
text using multiplicative interaction terms.

B Nominal vs. Real Decision Making

Due to the fundamental theorem of asset pricing (see Cochrane (2005), among many
others), we know there exists a positive real discount factor, M r

t+1, such that the real price
on an asset that pays off Xr

t+1 in real units next period is given by:

qrt = Et

[
M r

t+1X
r
t+1

]
If we transform this into nominal prices, with a price level of Pt we receive:

qnt
Pt

= Et

[
M r

t+1

Xn
t+1

Pt+1

]
(⇔) qnt = Et

[
M r

t+1

(
Pt
Pt+1

)
Xn
t+1

]
= Et

[
Mn

t+1X
n
t+1

]
where the nominal SDF, Mn

t+1 ≡M r
t+1/Πt+1.

Applying this same concept to the firm’s time 1 problem in the model (without loss of
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generality):

V1 (. . . ) = Max
{k2}

Di1 +E1 [Mn
2Wi,2]

(⇔)
V1 (. . . )

P1

= Max
{k2}

Di1

P1

+E1

[
M r

2

Wi,2

P2

]
The bottom equation represents a real version of the original optimization. We can see
that the problems are equivalent with one another.

C Deriving Endogenous Inflation

As discussed in the main text, the real SDF will take the form:

mr
t ≡ log (M r

t ) = m0 −mA (At − µA)−mSSt

The central bank will follow an interest rate policy that is a linear function of the growth
and inflation environments:

y1t = i0 + αA (At − µA) + απ (πt − µπ) + st

In the above equation the only process / parameter that is unknown is πt. This will be
pinned down by the Euler equation for the short-term interest rate (i.e. it will be an
endogenous process). We guess and verify the following endogenous process for inflation.

πguesst = π0 + πAÃt + πSSt

Verification of the inflation process will amount to finding {π0, πA, πS} such that
no-arbitrage holds.
The no-arbitrage condition for short-term interest rates:

y1t = − log
(
Et

[
Mn

t+1

])
= − log (Et [exp (mt+1 − πt+1)])

The LHS is already given through the Taylor rule policy. The RHS will be implied by the
fundamental dynamics:

yimpliedt = − log
(
Et

[
exp

(
mr
t+1 − πt+1

)])
= − log (Et [exp (∗∗)])

= −Et [∗∗]− 1

2
Vart [∗∗]
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The bottom result is due to the conditional log-normality. With some algebra:

Et [∗∗] = m0 − π0 − (mA + πA)ρAÃt − (mS + πS)ρSSt

Vart [∗∗] = (mA + πA)2 σ2
A + (mS + πS)2σ2

S

=⇒ yimpliedt =

{
π0 −m0 −

1

2
(mA + πA)2 σ2

A −
1

2
(mS + πS)2 σ2

S

}
+ {(mA + πA)ρA} Ãt + {(mS + πS)ρS}St

Substituting our guessed inflation process, the Taylor rule (y1t ) policy can be re-written as:

y1t = i0 + αAÃt + απ (πt − µπ) + St

= i0 + (αA + αππA) Ãt + (αππS + 1)St

If we match up coefficients of yimpliedt and yTRt , we receive:

πSρS = 1 + αππS =⇒ πS =
1−mSρS
ρS − απ

(mA + πA)ρA = αA + αππA =⇒ πA =
mAρA − αA
απ − ρA

First equality =⇒ π0 = i0 +m0 +
1

2
(mA + πA)2 σ2

A +
1

2
π2
Sσ

2
S

As a result the nominal log SDF can be written as:

mn
t+1 = mt+1 − πt+1

= (m0 − π0)− (mA + πA) Ãt+1 − (mS + πS)St+1

Any nominal, risk premium for an asset (its conditional expected returns) will be based on
that asset’s return covariance with these last two shock terms.

62



Table A1. Credit Risk Response to Monetary Policy Shocks – Weekly Changes
This table reports the effect of monetary policy shocks on weekly CDS changes. The main regression
specification is very similar to that in Equation (1), except we replace the left hand side variable
by a weekly CDS change, yi,t+5 − yi,t−1, where t reflects the FOMC announcement day. Columns 1
to 3 report the baseline results, which only include monetary policy shocks as explanatory variables.
Columns 4 to 6 report the results when we include the change in the quoted CDS spread measured
the day after the FOMC announcement day (most commonly used throughout the analysis). Columns
7 to 9 report the results when we include (i) the change in the quoted CDS spread measured the
day after the FOMC announcement day, (ii) the contemporaneous weekly change in the expected loss
component of CDS, and (iii) the firm-level variables listed in Panel C of Table 3 and the (log) market
capitalization the day before the FOMC announcement day as control variables. We standardize monetary
policy shocks so that all coefficients represent the change in CDS due to a 1σ change in the monetary pol-
icy shock. In all regressions, we include firm fixed effects and cluster standard errors at the FOMC date level.

* Significant at 10 percent; ** Significant at 5 percent; *** Significant at 1 percent.

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Target 0.995 -0.168 -0.216

(0.908) (-0.229) (-0.233)

Path 1.724∗∗ 0.364 0.193

(2.352) (0.724) (0.362)

BRW 1.313 -0.192 -0.500

(1.372) (-0.298) (-0.887)

∆dCDS 1.256∗∗∗ 1.252∗∗∗ 1.256∗∗∗ 1.205∗∗∗ 1.202∗∗∗ 1.203∗∗∗

(27.498) (26.947) (26.759) (26.043) (25.474) (25.589)

∆w Exp. Loss 0.320∗∗∗ 0.320∗∗∗ 0.328∗∗∗

(7.280) (7.225) (7.454)

Dependent Variable ∆w CDS ∆w CDS ∆w CDS

Observations 54,573 54,573 54,115 54,573 54,573 54,115 33,548 33,548 33,246

R2 0.018 0.022 0.020 0.430 0.430 0.430 0.459 0.459 0.461

S.E. FOMC date Y Y Y Y Y Y Y Y Y

Firm F.E. Y Y Y Y Y Y Y Y Y

Controls No No No No No No Y Y Y
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Table A2. Cross-Sectional Credit Response to Monetary Policy Shocks – Liquidity

This table reports the heterogeneous effects of monetary policy shocks on credit risk, while controlling
for liquidity. The regression specification tested below is very similar to the second line in Equation (3)
however we limit our sample to CDS observations with composite depth (i.e. number of quotes) larger than
5. As in earlier tables, CDS risk quintiles are determined through lagged values of CDS, the day prior to
the FOMC announcement. Columns 1 to 3 report the results using CDS changes as the dependent variable.
Columns 4 to 6 focus on movements in expected loss compensation as the dependent variable. Columns 7
to 9 show the results for changes in CDS after we control for the contemporaneous change in expected loss
compensation. Coefficients represent the basis point change in credit risk due to a 1σ change in the policy
shock, conditional on the firm falling into that lagged risk quintile. In all regressions, we include firm fixed
effects and cluster standard errors at the FOMC date level.

* Significant at 10 percent; ** Significant at 5 percent; *** Significant at 1 percent.

(1) (2) (3) (4) (5) (6) (7) (8) (9)

shockXCDS2 0.001 0.314∗∗ -0.117 -0.007 -0.112∗∗ -0.034 0.016 0.360∗∗ -0.123

(0.003) (2.414) (-0.340) (-0.158) (-1.950) (-0.701) (0.055) (2.431) (-0.351)

shockXCDS3 0.500 0.893∗∗∗ 0.580 0.079 0.060 0.164∗ 0.487 0.969∗∗∗ 0.492

(1.053) (3.448) (0.803) (1.230) (0.733) (1.689) (0.902) (3.414) (0.689)

shockXCDS4 0.599 1.803∗∗∗ 1.160 0.284 0.172 0.353∗∗ 0.301 2.146∗∗∗ 0.928

(0.629) (3.280) (0.906) (1.409) (0.840) (2.094) (0.278) (3.664) (0.736)

shockXCDS5 3.938∗∗∗ 4.189∗∗∗ 3.750 1.387∗∗∗ 0.905 1.738∗∗ 3.190∗∗ 4.553∗∗∗ 2.930

(2.641) (3.068) (1.615) (2.889) (1.507) (2.350) (2.054) (3.500) (1.375)

∆ Exp. Loss 0.569∗∗∗ 0.576∗∗∗ 0.580∗∗∗

(7.540) (7.699) (7.561)

Dependent Variable ∆ CDS ∆ Exp. Loss ∆ CDS

Observations 16,520 16,520 16,352 15,253 15,253 15,085 15,253 15,253 15,085

R2 0.288 0.285 0.285 0.116 0.109 0.117 0.340 0.346 0.341

S.E. FOMC date Y Y Y Y Y Y Y Y Y

Firm and Time F.E. Y Y Y Y Y Y Y Y Y

Controls Y Y Y Y Y Y Y Y Y

Depth > 5 > 5 > 5 > 5 > 5 > 5 > 5 > 5 > 5
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Table A3. Cross-Sectional Credit Response to Monetary Policy Shocks – ZLB Subsamples

This table reports the heterogeneous effects of monetary policy shocks on credit risk, when examining
subsamples determined by the zero-lower bound (ZLB) period. The regression specification tested below is
very similar to the second line in Equation (3) however we examine the response separately, in the period
outside of the 2009 – 2015 ZLB period (columns 1 to 3) and within that period (columns 4 to 6). In
Panel A, the key outcome variable is the change in CDS spread surrounding the FOMC announcement.
Meanwhile Panels B and C focus on the expected loss component of the CDS and the credit risk premium,
respectively. As in earlier tables, CDS risk quintiles are determined through lagged values of CDS, the day
prior to the FOMC announcement. Coefficients represent the basis point change in credit risk due to a 1σ
change in the policy shock, conditional on the firm falling into that lagged risk quintile. In all regressions,
we include firm fixed effects and cluster standard errors at the FOMC date level.

* Significant at 10 percent; ** Significant at 5 percent; *** Significant at 1 percent.

Panel A: CDS

Target Path BRW Target Path BRW

shockXCDS2 0.0749 0.202∗∗ 0.0592 0.118 0.243 0.311∗∗∗

(0.532) (2.532) (0.204) (0.403) (1.571) (2.816)

shockXCDS3 0.198 0.411∗∗∗ 0.0399 1.138 0.371 0.677∗∗

(0.653) (3.266) (0.062) (0.859) (0.929) (2.368)

shockXCDS4 0.634 1.023∗∗∗ 0.392 -0.139 1.472∗ 1.411∗∗

(1.220) (2.800) (0.342) (-0.078) (1.886) (2.654)

shockXCDS5 2.599∗∗ 2.267∗∗∗ 3.272 -0.425 2.606 2.996∗∗

(2.594) (3.319) (1.438) (-0.105) (1.523) (2.102)

Observations 20,809 20,809 20,507 15,457 15,457 15,457

R2 0.156 0.150 0.153 0.178 0.182 0.188

S.E. FOMC date Y Y Y Y Y Y

Firm and Time F.E. Y Y Y Y Y Y

ZLB No No No Y Y Y
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Table A3. (Continued)

Panel B: Expected losses

Target Path BRW Target Path BRW

shockXCDS2 0.0509 -0.0233 0.0562 -0.199∗∗∗ -0.0154 0.061∗

(1.591) (-0.428) (0.883) (-2.910) (-0.292) (1.954)

shockXCDS3 0.249 0.208 0.289∗ 0.0520 0.0320 0.332∗∗

(1.639) (1.422) (1.678) (0.142) (0.176) (2.655)

shockXCDS4 0.503∗∗ 0.314 0.643∗ -0.0472 0.118 0.660∗∗∗

(2.093) (1.420) (1.676) (-0.055) (0.331) (3.104)

shockXCDS5 1.316∗∗∗ 1.264∗∗∗ 2.064∗∗ 0.936 0.212 1.640∗∗∗

(3.050) (2.962) (2.178) (0.417) (0.211) (2.973)

Observations 18,141 18,141 17,839 15,395 15,395 15,395

R2 0.110 0.107 0.111 0.131 0.131 0.147

S.E. FOMC date Y Y Y Y Y Y

Firm F.E. Y Y Y Y Y Y

ZLB No No No Y Y Y

Panel C: Credit Risk Premia

Target Path BRW Target Path BRW

shockXCDS2 0.0885 0.265∗∗ 0.048 0.204 0.248∗ 0.283∗∗∗

(0.521) (2.500) (0.144) (0.719) (1.662) (2.692)

shockXCDS3 0.107 0.496∗∗∗ -0.0109 1.121 0.355 0.546∗∗

(0.294) (3.329) (-0.016) (0.936) (0.959) (2.140)

shockXCDS4 0.381 1.302∗∗∗ 0.291 -0.113 1.425∗ 1.156∗∗

(0.642) (3.431) (0.243) (-0.075) (1.994) (2.460)

shockXCDS5 2.389∗∗ 2.986∗∗∗ 3.430 -0.852 2.524 2.354∗

(2.046) (3.784) (1.425) (-0.244) (1.595) (1.852)

∆ Exp. Loss 0.278∗∗∗ 0.280∗∗∗ 0.289∗∗∗ 0.415∗∗∗ 0.412∗∗∗ 0.388∗∗∗

(6.040) (6.495) (6.223) (4.917) (5.206) (4.995)

Observations 18,141 18,141 17,839 15,395 15,395 15,395

R2 0.187 0.187 0.190 0.208 0.212 0.214

S.E. FOMC date Y Y Y Y Y Y

Firm F.E. Y Y Y Y Y Y

ZLB No No No Y Y Y
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Table A4. Cross-Sectional Credit Response: CDS vs. Leverage by Category
This table reports the heterogeneous effects of monetary policy shocks on credit risk and equity returns,
due to cross-sectionally varying levels of risk as determined by historical credit default swap spreads
(CDS) and leverage (LEV). Dummy variables for each variable take 3 possible values and are interacted
with one another and the monetary shock term. For all dummy interaction terms, coefficients in
columns 1 to 3 (4 to 6) represent the basis point (percentage) change due to a 1σ change in the pol-
icy shock. In all regressions, we include firm fixed effects and cluster standard errors at the FOMC date level.

* Significant at 10 percent; ** Significant at 5 percent; *** Significant at 1 percent.

Dependent Variable ∆ CDS 2-Day Return

Target Path BRW Target Path BRW

(1) (2) (3) (4) (5) (6)

shockX(CDS1LEV2) -0.0130 -0.224∗∗∗ -0.129 -0.00458 0.148∗∗ 0.178∗∗

(-0.126) (-2.884) (-1.423) (-0.076) (2.220) (2.523)

shockX(CDS1LEV3) 0.141 -0.134 -0.00749 0.0951 0.148∗∗ 0.312∗∗∗

(0.887) (-1.635) (-0.046) (1.272) (2.210) (3.432)

shockX(CDS2LEV1) 0.0362 0.0511 0.376 -0.188 -0.0319 -0.180

(0.189) (0.342) (1.199) (-1.600) (-0.443) (-1.624)

shockX(CDS2LEV2) 0.242 0.315∗∗ 0.425 -0.153∗ 0.0247 -0.168∗∗

(0.648) (2.441) (1.229) (-1.948) (0.542) (-2.208)

shockX(CDS2LEV3) 0.490 -0.147 0.673∗∗ -0.197 -0.0563 -0.162

(1.494) (-0.773) (2.180) (-1.478) (-0.639) (-1.541)

shockX(CDS3LEV1) 1.794∗∗ 1.326∗∗ 1.738∗ -0.354∗ -0.125 -0.225

(2.064) (2.170) (1.973) (-1.827) (-0.882) (-1.447)

shockX(CDS3LEV2) 2.511∗∗∗ 1.899∗∗∗ 2.077∗∗ -0.292∗∗ -0.223∗∗ -0.402∗∗∗

(3.095) (3.264) (2.235) (-2.390) (-2.463) (-2.929)

shockX(CDS3LEV3) 1.426∗ 1.733∗∗ 2.690∗∗ -0.294∗ -0.280∗∗ -0.409∗∗

(1.738) (2.562) (2.368) (-1.750) (-2.330) (-2.368)

ret win lag -0.0350 -0.0338 -0.0364

(-1.655) (-1.590) (-1.741)

Observations 36280 36280 35978 36279 36279 35977

R2 0.152 0.152 0.156 0.338 0.338 0.340

S.E. FOMC date Y Y Y Y Y Y

Firm and Time F.E. Y Y Y Y Y Y

Controls Y Y Y Y Y Y
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Table A5. Cross-Sectional Credit Response: CDS vs. Market Size by Category
This table reports the heterogeneous effects of monetary policy shocks on credit risk and equity returns,
due to cross-sectionally varying levels of risk as determined by historical credit default swap spreads
(CDS) and market capitalization (MKT). Dummy variables for each variable take 3 possible values and are
interacted with one another and the monetary shock term. For all dummy interaction terms, coefficients
in columns 1 to 3 (4 to 6) represent the basis point (percentage) change due to a 1σ change in the pol-
icy shock. In all regressions, we include firm fixed effects and cluster standard errors at the FOMC date level.

* Significant at 10 percent; ** Significant at 5 percent; *** Significant at 1 percent.

Dependent Variable ∆ CDS 2-Day Return

Target Path BRW Target Path BRW

(1) (2) (3) (4) (5) (6)

shockX(CDS1MKT1) -0.0536 -0.424 0.0425 -0.208∗ -0.0756 -0.300∗∗

(-0.116) (-1.156) (0.078) (-1.965) (-0.755) (-2.096)

shockX(CDS1MKT2) -0.0289 -0.0960 0.00622 -0.145∗ -0.0151 -0.134∗∗

(-0.387) (-0.973) (0.071) (-1.869) (-0.348) (-2.150)

shockX(CDS2MKT1) -0.0328 -0.0117 0.121 -0.398∗∗ -0.150 -0.442∗∗∗

(-0.282) (-0.099) (1.072) (-2.586) (-1.209) (-2.696)

shockX(CDS2MKT2) 0.224 0.275∗∗ 0.665∗∗ -0.200∗∗ -0.107 -0.321∗∗∗

(0.868) (2.206) (2.584) (-2.346) (-1.539) (-3.116)

shockX(CDS2MKT3) 0.469 -0.141 0.559 -0.120 0.107∗ -0.377∗∗∗

(1.391) (-0.602) (1.582) (-1.206) (1.758) (-3.619)

shockX(CDS3MKT1) 1.409∗∗ 1.487∗∗ 2.520∗∗∗ -0.439∗∗∗ -0.310∗∗ -0.617∗∗∗

(2.327) (2.565) (2.920) (-2.811) (-2.208) (-3.073)

shockX(CDS3MKT2) 1.825∗∗ 1.785∗∗∗ 1.679∗∗ -0.288 -0.231∗ -0.333∗∗∗

(2.462) (3.557) (2.180) (-1.545) (-1.756) (-2.688)

shockX(CDS3MKT3) 2.406∗∗ 2.182∗∗∗ 1.749 -0.183 -0.521∗∗∗ -0.882∗∗∗

(2.441) (3.550) (1.304) (-0.862) (-3.602) (-4.805)

ret win lag -0.0339 -0.0335 -0.0365

(-1.626) (-1.579) (-1.758)

Observations 36280 36280 35978 36279 36279 35977

R2 0.151 0.152 0.155 0.339 0.338 0.341

S.E. FOMC date Y Y Y Y Y Y

Firm and Time F.E. Y Y Y Y Y Y

Controls Y Y Y Y Y Y
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