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Abstract

This internet appendix is published online as a supplement to the working paper. That

work is intended to appeal most directly to interested readers. In this appendix we develop

several extensions of the model in the main text. Specifically, we: (i) allow agents to differ

in their aversion to concentrated bilateral exposure; (ii) allow agents to internalize the effect

of their trading behavior on equilibrium prices; and (iii) develop a five-agent example of the

model, which helps build intuition for the core-periphery version of the model. In addition, as a

complement to our stress tests in the main text, we study how the removal of a large customer

impacts market outcomes. We then demonstrate the robustness of our dealer selection algorithm

from the main text by applying it to various subsamples. Finally, we provide details on how

we compute net exposures and consider alternative methods for computing the exposure of core

dealers to aggregate credit risk.
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IA.1 Model Extensions and Applications

IA.1.1 Model with Heterogeneous Aversion to Concentrated Positions

In this section, we introduce heterogeneity in agents’ aversion to hold concentrated positions with

few counterparties. Specifically, we assume that agents are not averse to selling protection to a

single counterparty, however there is aversion of buying protection. In addition, we assume that

when dealers buy protection from each other, their aversion of holding concentrated position is

parameterized by φdbuy. If dealers buy protection from customers or customers buy protection from

dealers, then aversion of holding concentrated position is parameterized by φcbuy. This extension of

the model captures two important aspects of counterparty risk aversion: (i) agents are not averse

of selling protection which is consistent with the notion that default is more likely to come from

the insurance provider rather than from the counterparty being insured; and (ii) dealers may have

lower aversion to hold concentration position with few counterparties.

Let agent i’s aversion of buying protection from agent j be given φijbuy, then agent i’s optimization

problem is given by:

max
{γij}nj=1,zi

wi(1− µ) +
n∑
j=1

γij(Rij − µ)− α

2
(wi + zi)

2 σ2 − 1

2

n∑
j=1,γij<0

φijbuyγ
2
ij ,

subject to

γij = 0 if gij = 0,

and

zi =
n∑
j=1

γij .

Agents i’s first-order conditions are given by:

Rij − µ =


ẑi if γij > 0

φijbuyγij + ẑi if γij < 0

.

In equilibrium, we have Rij = Rji and γij + γji = 0, thus if agent i sells to agent j, i.e. γij > 0
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and γji < 0, we have that agents i and j first-order conditions are given by:

0 = Rij − µ− ẑi

φjibuyγji = Rij − µ− ẑj ,

where

ẑi = (wi + zi)ασ
2. (IA1)

These first-order conditions imply that:

Rij − µ =
ẑi + ẑj

2
− 1

2
γijφ

ji
buy = ẑi.

If agent i buys protection from agent j (i.e. γij < 0 and γji > 0) we have that:

φijbuyγij = Rij − µ− ẑi

0 = Rij − µ− ẑj ,

which imply that

Rij − µ =
ẑi + ẑj

2
+

1

2
γijφ

ij
buy = ẑj .

Hence, we can express equilibrium prices more generally as follows

Rij − µ =


ẑi+ẑj

2 − 1
2γijφ

ji
buy if γij > 0

ẑi+ẑj
2 + 1

2γijφ
ij
buy if γij < 0

,

or

Rij − µ = min{ẑi, ẑj}. (IA2)
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By substituting the price equation into agents’ first-order conditions and considering both cases

of agent i being either a seller or a buyer, we can express the bilateral quantities traded as follows:

γij =


ẑj−ẑi
φjibuy

if ẑj > ẑi

ẑj−ẑi
φijbuy

if ẑj < ẑi

, (IA3)

whenever i and j are connected, i.e. gij = 1. Next, sum γij over j and equate it to zi to obtain

agent i’s net position:

zi =
n∑
j=1

γij =

n∑
j=1

gij
max{ẑj − ẑi, 0}

φjibuy
+

n∑
j=1

gij
min{ẑj − ẑi, 0}

φijbuy
.

Using the core-periphery assumption, the above expression for a customer j = nd + 1, . . . , n

becomes:

zj =

nd∑
i=1

max{ẑi − ẑj , 0}
φcbuy

+

nd∑
i=1

min{ẑi − ẑj , 0}
φcbuy

=

nd∑
i=1

ẑi
φcbuy

− nd
ẑj
φcbuy

.

Therefore, for every customer j = nd + 1, . . . , n, given
∑nd

i=1 ẑi, we can write ẑj as a function of

zj ,

ẑj =

∑nd
i=1 ẑi − φcbuyzj

nd
, (IA4)

and we can write zj as a function of ωj ,

zj =

∑nd
i=1 ẑi − ασ2ndωj
φcbuy + ασ2nd

. (IA5)
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The net position for dealer i = 1, . . . , n is given by:

zi =

nd∑
j=1

max{ẑj − ẑi, 0}
φdbuy

+
n∑

j=nd+1

max{ẑj − ẑi, 0}
φcbuy

+

nd∑
j=1

min{ẑj − ẑi, 0}
φdbuy

+
n∑

j=nd+1

min{ẑj − ẑi, 0}
φcbuy

=

nd∑
j=1

ẑj − ẑi
φdbuy

+

n∑
j=nd+1

ẑj − ẑi
φcbuy

=

nd∑
j=1

ẑj

φdbuy
− nd

ẑi

φdbuy
− (n− nd)

ẑi
φcbuy

+

n∑
j=nd+1

ẑj
φcbuy

,

=

nd∑
j=1

ẑj

φdbuy
− nd

ẑi

φdbuy
− (n− nd)

ẑi
φcbuy

+
ασ2nω

φcbuy
− 1

φcbuy

nd∑
j=1

ẑj , (IA6)

where the last equality uses the fact that
∑n

j=1 ẑj = ασ2nω. Hence, for dealer i = 1, . . . , nd, we

can write ẑi as a function of zi and
∑nd

j=1 ẑj ,

ẑi =

(
1

φdbuy
− 1

φcbuy

)∑nd
j=1 ẑj + ασ2nω

φcbuy
− zi

nd

φdbuy
+ n−nd

φcbuy

, (IA7)

and we can write zi as a function of ωi and
∑nd

j=1 ẑj ,

ẑi =

(
1

φdbuy
− 1

φcbuy

)∑nd
j=1 ẑj + ασ2nω

φcbuy
− ασ2ωi

(
nd

φdbuy
+ n−nd

φcbuy

)
1 + ασ2

(
nd

φdbuy
+ n−nd

φcbuy

) . (IA8)

By summing Equation (IA6) over i from 1 to nd, we have:

ndzd = − n

φcbuy

nd∑
j=1

ẑj +
nd
φcbuy

nασ2ω, (IA9)

which allows us to write
∑nd

j=1 ẑj as a function of zd and ω:

nd∑
j=1

ẑj =
ndnασ

2ω − φcbuyndzd
n

. (IA10)
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Notice that we can write zd as a function of ω’s. Starting from Equation (IA9):

ndzd = − n

φcbuy
ndασ

2 (ωd + zd) +
nd
φcbuy

nασ2ω

zd =
nασ2ω − nασ2ωd
φcbuy + nασ2

, (IA11)

which gives us
∑nd

j=1 ẑj by using the definition of ẑi:

nd∑
j=1

ẑj = ασ2nd (zd + ωd) . (IA12)

Equations (IA1) to (IA12) derived above are key to solve the model numerically as well as to

conduct the dealer removal exercise in the next subsection.

IA.1.1.1 Calibration

To numerically solve the asymmetric model, we need the distribution of net positions of all agents.

Given the model parameters, if we have the distribution of net positions (z’s), then we can use

Equations (IA1), (IA2), (IA3), (IA4), (IA7), and (IA10) to derive model-implied pre-trade expo-

sures, bilateral positions and prices. In the data, we observe the net position of all dealers. For

customers, we do not observe their net position relative to their market equity, but we can use

the model’s clearing conditions to infer the average customers’ net positions. Specifically, we can

write customers’ average net position as zc = − nd
n−nd

zd. To take into account heterogeneity of net

position among customers, we assume that the distribution of customers’ net positions is a linear

combination between the customers’ average net position and their notional position:

zj = zc + κz̃j ,

where z̃j is the net notional observed in the data standardized to have mean zero and standard

deviation of one basis point, and κ is a scaling parameter. If κ = 0, then we implicitly assume
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that customers have all the same net position in the CDS market. Notice that κ defines the cross-

sectional dispersion in net positions and, when κ = 1, the standard deviation of net positions is

one basis point.

The asymmetric model has three parameters to be calibrated: risk aversion (α), aversion of

dealers buying protection from other dealers dealers (φdbuy), and aversion of dealers and customer

buying protection from each other (φcbuy). For a given value of κ, we choose the three model

parameters in order to match three moments. First, we match the average spread in the dealer

market. Second, we match the average spread paid in the customer market. In the data, these two

spreads are 133 and 138.12 basis points, respectively. In the model, risk aversion drives the level

of spread, while aversion to concentrated position parameterized by both φcbuy and φdbuy drives the

difference between dealer and customer market spreads. Third, we match the fraction of aggregate

gross amount traded among dealers relative to the total gross amount traded in the economy. In the

model, when φcbuy increases relative to φdbuy there will be less trade between customers and dealers.

The difference between φcbuy and φdbuy drives the third moment we match. We numerically solve the

asymmetric model, choosing α, φdbuy and φcbuy to match these three moments simultaneously.

Given a calibrated version of the model, we conduct the same dealer removal exercise as in

the benchmark model by removing the largest-net-seller dealer from the economy along with its

pre-trade exposure. Specifically, in the dealer removal exercise, we take all other agents’ pre-trade

exposure and solve the model for equilibrium prices and quantities using Equations (IA2), (IA3),

(IA5), (IA8), (IA11), and (IA12).

Table IA1 reports the results of the asymmetric model. To show that the asymmetric model can

generate dealer remove effects of the same magnitude as in the benchmark model model, we choose

κ suh that the dealer removal effect on the average dealer market spread is 31.06 basis points, which

is the result from our benchmark model. In Column (1), we match the fraction of dealer-dealer

traded volume to be 75%, and in Column (2) we match this fraction at 70%. Panel A reports the

targeted moments as well as the average dealers’ average marginal cost of concentrated trading.

Panel B reports the same set of moments as in Panel A, but after removing the largest-net-seller

dealer from the economy along with its risk bearing capacity. Panel C reports the model parameters
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used, and Panel D reports the dealer removal effects on the dealer market average spreads.

The model with asymmetric counterparty cost can generate the similar dealer removal effects

if compared to our benchmark framework. Specifically, both calibrations successfully match the

dealer removal effect on average dealer market spread to our benchmark estimate, showing that

asymmetric counterparty cost is not inconsistent with our dealer removal results. In the calibrations

of this extension of the model, customers’ marginal cost of holding a concentrated position is higher

than dealers’, i.e. φcbuy > φdbuy. This is the result of the calibration, but it is consistent with the

intuition that dealers could more efficient at holding concentrated position or simply less averse

to do so. Even with agents more averse to trade with customers, the average counterparty cost is

less one basis points for dealers buying from customers and less than two basis points for dealers

buying from other dealers.

IA.1.2 Price Impact

In this subsection, we derive an alternative version of the benchmark model in which agents in-

ternalize the effect of their own exposure to the underlying risk on equilibrium prices. In the

benchmark model, equilibrium prices are given by Equation (7) in the main text, which means

that when agent i sells insurance to agent j, then she receives Rij as payment. Notice, however,

this equilibrium price depends on both agents’ post-trade exposures. Notice that agent i optimally

chooses the total net exposure to the underlying default risk, i.e., zi, but takes equilibrium prices

as given. In this subsection, we derive equilibrium allocations and prices when agents take into

account the effect of their net exposure to the underlying default risk on prices.

To solve this model, we guess and verify that the equilibrium price in a bilateral trade will be

a linear combination of the counterparties’ post-trade exposures. Specifically, we assume that:

Rij − µ = A+Bασ2zi + Cασ2zj +Dασ2ωi + Eασ2ωj ,

where A, B, C, D, and E are coefficients to be determined. The assumption here is similar

to a Cournot competition model in which firms take their competitors’ quantities as given and
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equilibrium is pinned by the fixed point of best-responses. In our setting, agent i take j’s exposure

and all pre-trade exposures as given but internalize the effect of of i’s exposure on equilibrium

prices.

Formally, agent i solves the following optimization problem:

max
{γij}nj=1,zi

wi(1− µ) +

n∑
j=1

γij(Rij − µ)− α

2
(wi + zi)

2 σ2 − φ

2

n∑
j=1

γ2
ij

subject to

γij = 0 if gij = 0,

zi =
n∑
j=1

γij ,

and

Rij − µ = A+Bασ2 (zi + ωi + zj + ωj) .

Hence, the first-order conditions imply:

Rij − µ+
∑
s

γis
∂

∂γij
Rij = ασ2(zi + ωi) + φγij

=⇒ Rij − µ = ασ2(zi + ωi −Bzi) + φγij

Under the no transaction cost assumption, i.e., Rij = Rji, along with the bilateral clearing

condition, i.e., γij + γji = 0, we can write equilibrium prices as follows:

Rij − µ =
ασ2

2
[(1−B)zi + ωi + (1−B)zj + ωj ]

Applying the method of undetermined coefficients to our initial guess gives

A = 0,

B = C =
1

3
,
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and

D = E =
1

2
.

Hence, equilibrium prices are given by:

Rij − µ = ασ2 1

2
[ωi + ωj + z̃i + z̃j ] , (IA13)

and first-order condition can be written as:

Rij − µ = ασ2 (ωi + z̃i) + φγij , (IA14)

where z̃i = 2
3zi.

To get derive equilibrium allocations, we can combined Equations (IA13) and (IA14), along

with the fact that zi =
∑n

j=1 γij :

z̃i + ωi =
(

1− λ̃i
)
ωi + λ̃i

n∑
j=1

g̃ij (z̃j + ωj) ∀i = 1, . . . , n (IA15)

where z̃i = 2
3zi, g̃ij =

gij
Ki

, Ki =
∑n

j=1 gij , and λ̃i = Kiασ
2

Kiασ2+3φ
∈ (0, 1).

Notice that Equation (IA15) is extremely similar to Equation (8) in the main text, except that

under price impact we have z̃i and λ̃i instead of zi and λi. As a result, the analyses discussed in

the paper hold in a price impact environment as well.

IA.1.3 Model with Speculative Trading Motive

In this section, we consider a variation of the model in which agents disagree about expected

default—they agree to disagree. Specifically, agent i beliefs expected default is µi = µ+ νi, where

νi is independent across agent with mean zero. In this case, agents trade not only to share risk

but also for speculative reasons. For instance, if agent k is more optimistic about the expected
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default than agent l, i.e. µk < µl, then agent k would be willing to sell insurance to agent l. In

equilibrium, the total net positions of agent depends, of course, on the entire network structure

and every agents’ trades with other counterparties. Formally, in this variation of the model, agent

i’s optimization problem becomes:

max
{γij}nj=1

wi(1− µi) +

n∑
j=1

γij(Rij − µi)−
α

2
(wi + zi)

2 σ2 − φ

2

n∑
j=1

γ2
ij ,

subject to γij = 0 if gij = 0, and zi =
∑n

j=1 γij . Similar to the benchmark model, all bilateral

markets clear, i.e. γij + γji = 0 for every i and j, and there are no transaction costs between

counterparties, i.e. Rij = Rji for every i and j.

Agent i’s optimality conditions are given by:

Rij − µi − α (wi + zi)σ
2 − φγij = 0 ∀j s.t. gij = 1,

γij = 0 ∀j s.t. gij = 0,

zi −
n∑
j=1

γij = 0.

Next, we highlight two properties of the competitive equilibrium with heterogeneous beliefs about

the expected default.

First, heterogeneity in beliefs (µi’s) is isomorphic to heterogeneity in pre-trade exposures (ωi’s)

in terms of equilibrium prices and quantities traded. Notice that the equilibrium allocation is the

solution to the following system of equations:

Rij − µi − α (wi + zi)σ
2 − φγij = 0 ∀j s.t. gij = 1

γij = 0 ∀j s.t. gij = 0

zi −
n∑
j=1

γij = 0

γij + γji = 0

Rij −Rji = 0
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Thus, any combination of µi and ωi such that µi + ασ2wi remains constant delivers the same

allocation and prices in equilibrium, i.e. γ’s and R’s are exactly the same, and heterogeneity in

beliefs is isomorphic to heterogeneity in pre-trade exposures. In other words, trading motives do

not change equilibrium allocation whether these incentives are based on speculative or risk sharing

motives. Therefore, our systemic risk analysis holds regardless of agents’ motive for trade.

The intuition behind this result is that higher pre-trade exposure is allocationally equivalent to

believing in a higher default probability, even though the reason for trade is very different. On one

hand, an agent with higher pre-trade exposure is willing to buy more protection against aggregate

default in order to protect herself against default risk. On the other hand, someone who beliefs

that the default probability is higher is also willing to buy more insurance because the current

exposure is perceived as riskier. Thus, higher ωi and higher µi are equivalent in terms of demand

for insurance.

Second, in terms of risk reallocation, heterogeneity in beliefs (µi’s) is not isomorphic to hetero-

geneity in pre-trade exposures (ωi’s). Any combination of µi and ωi such that µi + ασ2wi remains

constant delivers the same allocation and prices in equilibrium, i.e. γ’s, z′ and R’s are exactly

the same. For risk reallocation though, what matters is agents’ post-trade exposures, which are

given by zi + ωi. These will vary with ωi even if µi + ασ2wi remains constant. In equilibrium, an

agent who beliefs in a higher (lower) expected default buys more (less) insurance against aggregate

default risk, moving further away from an allocation with more risk-sharing.

IA.1.4 Three-agent example

In this subsection, we consider an example with three agents in order to provide intuition and to

highlight key features of our framework.1 First, the example generates price dispersion and inter-

mediation in equilibrium. Second, it generates what appears like bid-ask spreads with asymmetric

prices. Lastly, the example can generate a counterintuitive trading pattern, in which an agent

with higher pre-trade exposure sells protection to someone with lower pre-trade exposure to the

underlying asset. The derivations of the three-agent example are in Appendix IA.1.4.1.

1We provide a core-periphery example, with the smallest possible number of agents (five), in the Internet Appendix
IA.1.5.
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We assume that there are three agents in the economy in the example. Agents 1 and 2 can

trade with each other, and agents 1 and 3 can also trade with one another. However, agents 2 and

3 cannot trade with each other. Hence, agent 1 in this example acts like a central dealer to agents

2 and 3. Formally, the trading network is given by:

G =


1 1 1

1 1 0

1 0 1

 . (IA16)

In this economy, agents 1, 2, and 3 have pre-trade exposures given by ω1, ω2, and ω3, respectively.

To keep the example more tractable, we set ω1 = 0. In equilibrium, based on Equation (8), agent

1’s net position is:

z1 =
ασ2

3ασ2 + 2φ
(ω2 + ω3) . (IA17)

Agent 1’s net position, z1, is a combination of the pre-trade exposures of agents 2 and 3. If agents

2 and 3 have pre-trade exposures greater than agent 1, i.e. ω2 +ω3 > 0, then agent 1 endogenously

becomes a net seller of insurance with z1 > 0 in equilibrium.

Using Equation (8) and agent 1’s net position, agents 2 and 3 net positions are given by:

z2 =

(
ασ2

ασ2 + 2φ

)(
ασ2

3ασ2 + 2φ

)[
ω3 − ω2

(
2ασ2 + 2φ

ασ2

)]
,

and

z3 =

(
ασ2

ασ2 + 2φ

)(
ασ2

3ασ2 + 2φ

)[
ω2 − ω3

(
2ασ2 + 2φ

ασ2

)]
.

Next, we highlight the three aforementioned features of this example. First, notice that if ω3 > 0

and ω2 = −ω3, then z1 = 0 in equilibrium from Equation (IA17). Also, in equilibrium, we would

have z2 > 0 and z3 < 0. This example generates intermediation in equilibrium as agent 1 buys

insurance from agent 2 and sells it to agent 3.
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Second, this example generates what appears like bid-ask spreads. To see why, notice that the

difference between the price at which agent 1 sells to agent 2 and the price at which agent 1 buys

from agent 3 is positive and given by:

R13 −R12 =φ

(
ασ2

ασ2 + 2φ

)
(ω3 − ω2) .

If ω3 > ω2, then such price difference is positive, i.e., R13 −R12 > 0.

Furthermore, prices are tilted towards larger pre-trade exposures, generating asymmetric bid-

ask spreads. To show such asymmetry is generated, let R11 be the equilibrium price for agent 1 if

it would trade with itself. Specifically, let R11 − µ = ασ2(z1 + ω1) = ασ2z1. Hence, we can show

that:

R13 −R11 > R11 −R12 ⇔ ω3 > −ω2,

which means that the spread between agents 1 and 3 is greater than the spread between agent 1

and 2 if, and only if, agent 3’s pre-trade exposure is sufficiently high. In this case, agent 3 has too

much exposure relative to other market participants and pays a higher price in equilibrium to buy

protection against the underlying default risk.

The third feature of this example is a counterintuitive trading pattern, in which an agent

with higher pre-trade exposure sells protection to someone with lower pre-trade exposure to the

underlying asset. Specifically, we have that

z2 > 0⇔ ω3 >
2ασ2 + 2φ

ασ2
ω2.

This means that agent 2 sells insurance to agent 1, even if agent 2 is more exposed than agent

1 before trade, i.e., ω2 > ω1 = 0. This is true in equilibrium because agent 3 is significantly more

exposed to the underlying default risk. In equilibrium, agent 3 demands more insurance from agent

1, who in order to supply such insurance, has to buy additional protection from agent 2. As a

result, agent 1 buys insurance from agent 2 and sells to agent 3 in equilibrium.
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IA.1.4.1 Derivation

The following figure depicts the three-agent example:

1

2 3

which means that the trading network is given by:

G =


1 1 1

1 1 0

1 0 1

 . (IA18)

Agents 1, 2, and 3 have pre-trade exposures given by ω1, ω2, and ω3, respectively. Furthermore,

we assume ω1 = 0.

Let us solve for agent 1’s net position using Equation (8):

z1 = λ1
1

3
(ω2 + ω3 + z1 + z2 + z3) =

ασ2

3ασ2 + 2φ
(ω2 + ω3) .

The derivation above uses the fact that ω1 = 0, along with the clearing condition given by: z1 +

z2 + z3 = 0.

Using Equation (8) for agent 2, we have that agent 2’s post-trade exposure, z2 + ω2, is given

by:

z2 + ω2 =
ασ2z1 + 2φω2

ασ2 + 2φ

and, using z1 from Equation (IA17), agent 2’s net position, z2, is given by:

z2 =

(
ασ2

ασ2 + 2φ

)(
ασ2

3ασ2 + 2φ

)[
ω3 − ω2

(
2ασ2 + 2φ

ασ2

)]
. (IA19)
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Similarly, agent 3’s net position and post-trade exposure are given by:

z3 + ω3 =
ασ2z1 + 2φω3

ασ2 + 2φ
,

and

z3 =

(
ασ2

ασ2 + 2φ

)(
ασ2

3ασ2 + 2φ

)[
ω2 − ω3

(
2ασ2 + 2φ

ασ2

)]
.

Equilibrium prices are be given by:

R12 − µ =
1

2
ασ2 (z1 + ω1 + z2 + ω2)

=
1

2
ασ2 × 2ασ2z1 + 2φω2 + 2φz1

ασ2 + 2φ

and

R13 − µ =
1

2
ασ2 × 2ασ2z1 + 2φω3 + 2φz1

ασ2 + 2φ

Taking the difference, we have:

R13 −R12 =
1

2
ασ2

(
2φ

ασ2 + 2φ

)
(ω3 − ω2) > 0 ⇔ ω3 > ω2.

The equilibrium price for agent 1 if she would trade with herself is given by:

R11 − µ = ασ2(z1 + ω1)

= ασ2z1

= ασ2 ασ2

3ασ2 + 2φ
(ω2 + ω3) .
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Hence, we have:

R12 − µ =
1

2
ασ2 2ασ2z1 + 2φω2 + 2φz1

ασ2 + 2φ
,

R13 − µ =
1

2
ασ2 × 2ασ2z1 + 2φω3 + 2φz1

ασ2 + 2φ
,

and

R13 +R12 − 2R11 = ασ2 2ασ2z1 + φω2 + φω3 + 2φz1

ασ2 + 2φ
− 2ασ2z1

= 2ασ2ασ
2z1 + φ1

2(ω2 + ω3) + φz1 − z1(ασ2 + 2φ)

ασ2 + 2φ

= φασ2 (ω2 + ω3)− 2z1

ασ2 + 2φ

= φασ2
1− 2ασ2

3ασ2+2φ

ασ2 + 2φ︸ ︷︷ ︸
>0

(ω2 + ω3) .

Thus:

R13 −R11 > R11 −R12 ⇔ ω3 > −ω2.

Based on Equation (IA19), notice that

z2 > 0⇔ ω3 > ω2
2ασ2 + 2φ

,

which shows the third feature or the three-agent example.

IA.1.5 Five-agent example

In this subsection, we consider a core-periphery network with two dealers and three customers.

Agents 1 and 2 are dealers and agents 3, 4, and 5 are customers. Detailed derivations are provided
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in the next subsection. Formally, the trading network in this example is given by:

G =



1 1 1 1 1

1 1 1 1 1

1 1 1 0 0

1 1 0 1 0

1 1 0 0 1


. (IA20)

The trading network is also represented in Figure IA1.

We can use Equation (8) in the main text and solve for dealers’ positions in equilibrium. The

post-trade exposures of dealers id ∈ {1, 2} to the underlying default risk is given by:

zid + ωid = ω − (1− λd) [ω − ωid ]

where λd = 5ασ2

5ασ2+2φ
. The derivation above uses the clearing condition given by

∑5
i=1 zi = 0. If a

dealer is less exposed to the underlying default risk than the average economy, i.e. ω > ωid , then

such dealer will be also less exposed after trade, i.e. ω > zid + ωid .

Post-trade exposures determine equilibrium prices, and the at which a CDS contract is traded

in the dealer market, i.e., between agents 1 and 2, will be given by:

Rd ≡ R12 = µ+ ασ2ω − ασ2 (1− λd) [ω − ωd] , (IA21)

where ωd = (ω1 + ω2)/2 is the average pre-trade exposure among dealers. The dealer market price

reflect dealers’ post-trade exposure. Thus, if dealers are less exposed to default risk, then dealer

market prices will be lower in equilibrium if compared against the complete network counterfactual.

Formally, Equation (IA21) shows that Rd < µ+ ασ2ω if, and only if, ω > ωd.

This example also features a customer market as customer and dealer trade with each other.
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We can again use Equation (8) and solve for customers’ post-trade exposure in equilibrium:

zic + ωic = ω + (1− λc) (ωic − ω)− λc (1− λd) (ω − ωd), ic ∈ {3, 4, 5}.

where λc = 2ασ2

2ασ2+2φ
. The post-trade exposure of a customer depends not only on her pre-trade

exposure but also on the average pre-trade exposure of dealers. If dealers are less exposed to default

risk on average (ω > ωd), then dealers take on credit risk in equilibrium lowering customers’ post-

trade exposures.

The price from a trade between dealer id ∈ {1, 2} and customer ic ∈ {3, 4, 5} is given by:

Ridic = µ+ ασ2 1

2
(zic + ωic + zid + ωid) ,

and the average price in the customer market is defined as Rc ≡ 1
6

∑2
id=1

∑5
ic=3Ridic . We can

express the average price in the customer market as a function of the average price in the dealer

market:

Rc = Rd +
ασ2

2
(ω − ωd) (1− λc)

[
2

3
+ (1− λd)

]
. (IA22)

Thus, we have that price are on average higher in the customer market than in the dealer market,

whenever dealers are less exposed to default risk. Formally, Rc > Rd if, and only if, ω > ωd. This is

a reflection of the customers’ post-trade exposure being higher than dealers’. Prices represent the

average post-trade exposure of the two counterparties trading, and, when dealers and customers

trade, prices are higher than when dealers trade with each other because dealers’ lower exposure

to default risk.

We can express the average price in the customer market as follows:

Rc = µ+ ασ2ω − ασ2

2
(ω − ωd)

[
4ασ2 + 2φ

5ασ2 + 2φ
− 2

3

]
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Notice that 4ασ2+2φ
5ασ2+2φ

> 4
5 because both φ and ασ2 are positive. Thus, we have that Rc < µ+ασ2ω

if, and only if, ω > ωd. Although dealers’ post-trade exposure push prices up in the customer

market relative to the dealer market, customers’ pre-trade exposure being lower than dealers pushes

prices down relative to customers’ own shadow price of insurance. In equilibrium, the first effect

dominates and prices in the customers market are lower than they would be under the complete

network counterfactual, given that dealers are on average less exposed to aggregate default risk.

IA.1.5.1 Detailed derivations of the five-agent example

Let us solve for the net position of dealers id ∈ {1, 2} using Equation (8):

zid + ωid = (1− λd)ωid + λd
1

5

(
5∑
i=1

ωi +
5∑
i=1

zi

)

zid + ωid = (1− λd)ωid + λdω

zid + ωid = ω − (1− λd) [ω − ωid ]

zid = λd (ω − ωid) ,

where λd = 5ασ2

5ασ2+2φ
. The derivation above uses the clearing condition given by:

∑5
i=1 zi = 0. The

price in the dealer market, i.e., between agents 1 and 2, will be given by:

Rd ≡ R12 = µ+ ασ2ω − ασ2 (1− λd) [ω − ωd] ,

where ωd = (ω1 + ω2)/2 is the average pre-trade exposure among dealers.
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Based on Equation (8) in the main text, the net position of customer ic ∈ {3, 4, 5} is given by

zic + ωic =

(
1− 3ασ2

3ασ2 + 2φ

)
ωic +

3ασ2

3ασ2 + 2φ
× 1

3

 2∑
id=1

(ωid + zid) + zic + ωic


zic + ωic =

(
1− 3ασ2

3ασ2 + 2φ

)
ωic +

3ασ2

3ασ2 + 2φ
× 1

3
(2 [(1− λd)ωd + λdω] + zic + ωic)

zic + ωic =

(
1− 2ασ2

3ασ2 + 2φ

)
ωic +

2ασ2

3ασ2 + 2φ
× [(1− λd)ωd + λdω]

zic + ωic = (1− λc)ωic + λc [(1− λd)ωd + λdω]

zic + ωic = (1− λc)ωic + λc [ω − (1− λd) (ω − ωd)]

zic + ωic = ω − (1− λc) (ω − ωic)− λc (1− λd) (ω − ωd)

zic = λc [(1− λd)ωd + λdω − ωic ] ,

where λc = 2ασ2

2ασ2+2φ
.

The price from a trade between dealer id ∈ {1, 2} and customer ic ∈ {3, 4, 5} is given by:

Ridic = µ+ ασ2 1

2
(zic + ωic + zid + ωid)

= µ+ ασ2ω − 1

2
λc (1− λd) (ω − ωd)−

1

2
ασ2 [(1− λc) (ω − ωic) + (1− λd) (ω − ωd)] ,

and the average price in the customer market is given by:

Rc ≡
1

6

2∑
id=1

5∑
ic=3

Ridic

= µ+ ασ2ω − ασ2

2
λc (1− λd) (ω − ωd)−

ασ2

2
[(1− λc) (ω − ωc) + (1− λd) (ω − ωd)] .
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Notice that

ω − ωc = ω − 1

3
(ω3 + ω4 + ω5)

= ω − 1

3
(ω1 + ω2 + ω3 + ω4 + ω5 − ω1 − ω2)

= ω − 1

3
(5ω − 2ωd)

= ω − 5

3
(ω − ωd)− ωd

= −2

3
(ω − ωd) ,

hence we can simplify the average price in the customer market to:

Rc = µ+ ασ2ω − ασ2

2
λc (1− λd) (ω − ωd)−

ασ2

2

[
− (1− λc)

2

3
(ω − ωd) + (1− λd) (ω − ωd)

]
= µ+ ασ2ω − ασ2

2
(ω − ωd)

[
λc (1− λd)− (1− λc)

2

3
+ (1− λd)

]
= µ+ ασ2ω − ασ2

2
(ω − ωd)

[
(1− λd) (1 + λc)−

2

3
(1− λc)

]
= µ+ ασ2ω − ασ2

2
(ω − ωd) (1− λc)

[
(1− λd)×

1 + λc
1− λc

− 2

3

]
= µ+ ασ2ω − ασ2

2
(ω − ωd)

[
2φ

5ασ2 + 2φ
× 4ασ2 + 2φ

2φ
− 2

3

]
= µ+ ασ2ω − ασ2

2
(ω − ωd)

[
4ασ2 + 2φ

5ασ2 + 2φ
− 2

3

]
.

Notice that 4ασ2+2φ
5ασ2+2φ

> 4
5 because φ and ασ2 are both positive. Thus, we have that

Rc < µ+ ασ2ω.

We can also write the average price in the customer market as a function of the average price
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in the dealer market:

Rc = µ+ ασ2ω − ασ2

2
λc (1− λd) (ω − ωd)−

ασ2

2

[
− (1− λc)

2

3
(ω − ωd) + (1− λd) (ω − ωd)

]
= Rd −

ασ2

2
λc (1− λd) (ω − ωd)−

ασ2

2

[
− (1− λc)

2

3
(ω − ωd)− (1− λd) (ω − ωd)

]
= Rd +

ασ2

2
(ω − ωd)

[
−λc (1− λd) + (1− λc)

2

3
+ (1− λd)

]
= Rd +

ασ2

2
(ω − ωd) (1− λc)

[
2

3
+ (1− λd)

]
.

Thus, we have that

Rc > Rd.

IA.1.6 Aversion to Bilateral Concentration

Our analysis in Section 3.3 of the main text suggests that traders in the CDS market are averse to

bilateral concentration. We show this via the following regression:

PriceConcessioni,j,t = ψi,t + β × κi,j,t−1 + εi,j,t

We find that β < 0, which we in turn argue implies that the structural parameter governing

aversion to bilateral concentration φ is positive. To illustrate this more formally inside of the model,

consider a simple example where agent i faces only two counterparties, j = 1, 2. Further assume

that γi,2 > γi,1 > 0, so that i is a net seller of protection overall.

The first-order condition in Equation (5) means the following holds in equilibrium:

Ri,1 − µ = φγi,1 + ẑi

Ri,2 = µ = φγi,2 + ẑi

We know that Ri,2 > Ri,1 because γi,2 > γi,1 by assumption, meaning that our measure of price
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concession for each counterparty is:

PriceConcessioni,1 = Ri,2 −Ri,1

PriceConcessioni,2 = 0

Using the first-order conditions for i, we can express the price concession measures as:

PriceConcessioni,1 = φ× (γi,2 − γi,1)

PriceConcessioni,2 = 0 (IA23)

Next, consider running a regression of price concession on κi,j = γi,j/
∑

j |γi,j |:

PriceConcessioni,1 = ci + β × κi,1

PriceConcessioni,2 = ci + β × κi,2

where ci is an i-fixed effect. This is the model analogue to the regression we run in Section 3.3.4 of

the main text. We can solve for β in terms of model primitives by subtracting the two regression

equations from each other and substituting in Equation (IA23):

β = −φ× (γi,1 + γi,2)

Here, β < 0 iff φ > 0 under the assumptions in this toy example. It is straightforward to show

that we obtain the same conclusion in the case where i is a net buyer overall. This example

also highlights that β depends on the γ’s, which are themselves a function of the other structural

parameters in the model (e.g., α and ω’s). In the data, γ’s are harder to define for customers

because we do not cleanly observe their net wealth (γ is implicitly defined in the model relative to

size). Thus, while we can infer the sign of φ from the price-concession regressions, it is harder to

use these regressions to pin down the level of φ. In the main text, we instead use the fact that the

network is core-periphery, which allows us to infer φ directly from the gap between CDS spreads
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in dealer-dealer versus customer-dealer trades.

IA.1.7 Customer Removal

We can also use our benchmark framework to study the effects of a customer’s removal. Table IA2

reports the effects of removing a customer as large as the largest-net-seller dealer. We conduct two

distinct customer removal exercises. First, we remove a customer endowed with the same amount

of pre-trade exposure as the largest-net-seller dealer. The effects of such removal are negligible and

dealer market average spread barely changes, as reported in Column (2). According to Equation

(14) in the main text, customer failure affects dealer average spread (Rd ) by changing the average

pre-trade exposure in the economy (ω). Hence, the removal of a customer has limited impact on

the dealer average spread as it almost does not change ω. A customer and a dealer endowed with

the same pre-trade exposure are likely to hold different net positions in the CDS market because

customers face fewer counterparties, which limits their risk-sharing ability.

In the second exercise, we remove a customer that holds a net selling position as large as the

largest-net-seller dealer. To infer the customer’s pre-trade exposure, we use Equation (A7) from the

model’s derivation detailed in the appendix. This implies a customer with an even lower pre-trade

exposure to aggregate default. The removal of such customer has larger impact on equilibrium

spreads as reported in Column (3), although it is significantly lower than the failure of a dealer

providing the same amount of insurance to the economy. The average dealer market spread increases

by less than 10 basis points, from 141 to 150.85 basis points.

IA.1.8 Dealer Removal Robustness: ω assumption, DTCC Dealers

For robustness, we confirm that our results do not rely on normalizing ω to one. In Table IA3,

we report the same set of results assuming ω = 0.5 and ω = 3 and our conclusions are the same.

In Table IA4, we repeat the calibration and dealer removal exercise using DTCC’s definition of

dealers. We still find a large, yet lower, impact on credit spreads when a dealer fails. The effect is

lower because there are more dealers under the DTCC’s definition versus ours (26 vs. 14), so risk

is more easily reallocated when a dealer fails.
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IA.2 Robustness of Dealer Selection Algorithm

To verify the robustness and consistency of our dealer selection algorithm from Section 3.2.2 and

Appendix B of the main text, we perform the following exercise. We start with a full network matrix

that includes all the existing counterparties, and compute who is a dealer based on the algorithm.

In a second step, we sort all counterparties based on degree and then transaction volume. We then

iteratively remove one counterparty at a time, based on the previous degree-volume sort. Every

time we remove a counterparty, we rerun the algorithm for the remaining counterparties. In Panel

A of Figure IA2, we plot the minimized function against the number of remaining agents in this

iterative procedure. In Panel B, we plot the number of dealers as well. The main takeaway from

this analysis is that the same 14 dealers survive this strict selection procedure for every network

with more than 200 counterparties.

IA.3 The Net Position of Dealers

In this section, we provide additional details and robustness checks on how we construct our measure

of bilateral exposure between counterparties i and j. This metric is developed in Section 3.3.1 of

the main text.

IA.3.1 Estimating Betas

To keep this appendix self-contained, we repeat some details of our methodology that are presented

in the main text. To start, we compute the exposure of an arbitrary CDS position p to our aggregate

credit risk factor. On date t, suppose that the position is written on firm f and has m remaining

years till maturity. We first assign each position to a “maturity bucket” b based on its maturity m
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as follows:

b =



1 if m ∈ [0, 2)

3 if m ∈ [2, 4)

5 if m ∈ [4, 6)

7 if m ≥ 6)

Then for each position p, we match it to the Markit CDS spread database based on the underlying

firm f and maturity bucket b. Markit provides constant maturity CDS spreads for maturities

ranging from 6 months all the way to 10 years. We match each position’s maturity bucket b to

the closest constant maturity spread in Markit. For instance, if we observe a position on Ford

Motor Co. that has a maturity bucket b = 3, we obtain Ford’s history of three-year CDS spreads

up to date t from Markit. In addition, we match position p to Markit based on a number of

other characteristics. These characteristics include Markit RED id (i.e. the underlying the firm),

currency, capital structure tier, and documentation clause relating to the CDS default trigger. For

instance, holding all other characteristics equal, Ford CDS quoted in USD and EUR would be

matched to two different records in Markit. Similarly, Ford CDS on senior and junior debt, holding

all other characteristics equal, would be matched to two different records in Markit.

Next, we compute the position’s underlying beta with respect to changes in our aggregate credit

risk factor via the following rolling regression:

∆CDSf,b,s = α+ βp,t ×∆CDS Indexs + εf,b,s, s ∈ [t− 2 years, t]

where CDS Indexs is our aggregate credit risk factor on date s, as defined in Section 3.3.1 in the

main text. The regression is run using weekly data over a rolling window of two years. The

position’s beta βp,t gives us a gauge of how sensitive the underlying CDS spread of the position is

to movements in this index.

We compute βp,t for every position contained in our database sourced from DTCC. Importantly,

we account for both index and single name CDS positions. Selling protection on an index is

equivalent to selling protection on the individual firms that comprise the index. This distinction is
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particularly important in the CDS market because index positions are nearly half of the net notional

outstanding for the entire CDS market during our sample (Siriwardane (2018)). To account for this

fact, we follow Siriwardane (2018) and disaggregate CDS indices into their individual constituents

and then combine these “disaggregated” positions with any pure single name positions. We then

estimate βp,t for every position and date in this disaggregated data.

IA.3.2 Aggregation

Armed with β’s for each position p, we then aggregate between two counterparties as follows:

Ep,t ≡ βp,t ×Notionalp,t

Neti,j,t ≡
∑

p∈Si,j,t

Ep,t −
∑

p∈Bi,j,t

Ep,t

Grossi,j,t ≡
∑

p∈Si,j,t

Ep,t +
∑

p∈Bi,j,t

Ep,t (IA24)

where Si,j,t as the set of positions where i is a seller to j, and Bi,j,t as the set of positions where i

is a buyer from j, both as of time t. Because these measures of bilateral exposure are weighted by

βp,t, they provide a measure of net and gross bilateral exposure to our aggregate credit risk factor.

And, by construction, positive values of Neti,j,t mean that i is a net seller of CDS protection on

aggregate credit risk to j.

To determine a given counterparty i’s overall net exposure to aggregate credit risk, we can

simply sum their net positions across all counterparties:

Neti,t ≡
∑
j

Neti,j,t

Our main measure of dealer exposure from Section 3.4.1 of the main text scales each dealer’s

net notional exposure by its market capitalization:

zi,t ≡
Neti,t

MktCapi,t
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Finally, the net exposure of the entire dealer sector, denoted z̄d,t, is simply the average zi,t

across dealers.

IA.3.3 Alternative Measure of Credit Risk Exposure

We now turn to an alternative way of computing zi,t for each dealer i and date t. As with our

preferred measure of zi,t, we start with the β’s of each position (see Appendix IA.3.1). After

matching all DTCC positions to a β, we then compute each position’s “DV01”. Analogous to an

option delta, DV01 is the standard way that industry professionals quantify the dollar change of a

position with respect to a move in the position’s underlying credit spread. For example, suppose

that a fictitious position on Xerox Corp. has a notional value of $1. The DV01 tells how many

dollars the seller in the swap would gain/lose if Xerox’s credit spread falls by 1 basis point.2

We then use DV 01fp,t to denote position p’s DV01 as of date t. The superscript f denotes that

this DV01 is computed for a one basis point move in firm f ’s CDS spread. See Appendix IA.3.4

for details on how we compute DV 01fp,t. In all cases, we define DV 01fp from the perspective of the

protection seller, meaning that it is always positive for sellers and is negative for buyers (e.g. a

decrease in CDS spreads always helps the seller).

Once we compute DV 01fp,t, it is easy to ask how much the seller would lose if there is a one-basis

point fall in the aggregate credit risk factor:

DV 01Aggp,t = DV 01fp,t × βp,t

DV 01Aggp,t is useful because we can sum it across positions – its units are dollars per one basis

point fall in the aggregate credit risk factor. Once we compute DV 01Aggp,t for all positions, we

aggregate it bilaterally between counterparties i and j by setting Ep,t = DV 01Aggp,t in Equation

(IA24). Computing net and gross exposures at the individual counterparty level and dealer sector

then proceed as before. The gross exposure measure using DV01s in Equation (IA24) is further

used as an input to computing bilateral concentration κi,j,t in Section 3.3.2 in the main text.

2Following with industry standard, we consider a one basis point decrease in the entire term structure of Xerox’s
CDS spread.
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Average Dealer Exposure

Table IA5 presents some simple time-series averages of z̄d for each of our construction methodologies.

The biggest observation from the table is that all of the z̄d are positive on average. Thus, regardless

of how we measure exposure, dealers are on average sellers of credit protection during our sample.

The DV01-based metric indicates that a 100 basis point increase in aggregate credit risk would

cause the average dealer to lose 0.22 percent of their equity value.3 Again, the larger point here

is that dealers are exposed to the underlying credit risk of the economy during our sample. This

basic fact is important in how we infer the structural parameters of our model based on the prices

paid by dealers versus customers.

IA.3.4 Computing Credit Sensitivities (DV01)

We define a position’s credit portfolio sensitivity, DV 01fp , as the sensitivity of the position to a

change in the underlying reference entity’s credit spread. We arrive at this measure by applying

the ISDA Standard Model for pricing credit derivative contracts (CDS) and the implementation

detailed in the Appendix of Paddrik et. al. (2016). A CDS position p written on firm f can be

expressed as the difference between premium leg Premsf and pay leg Paysf , calibrated from market

spread sf (baseline). From the perspective of the seller, Premsf is the discounted present value of

the buyer’s incoming payments, while Paysf is the present value of outgoing payouts contingent

on default of f . Both components are functions of the underlying (risk-neutral) default risk of

the firm, which is inferred from prevailing credit spreads sf . (We suppress in our notation other

characteristics which uniquely identify the market spread such as term, documentation clause,

currency, and date of observation.) The position can be revalued under a differential shock to

market spreads, s′f = sf +dsf (shock). Following industry practice, we adopt 1 basis point change.

This permits us to express the DV 01fp from the protection seller’s perspective as

DV 01fp = (Prems′f − Premsf )− (Pays
′
f − Paysf ) ·Np

3In the table, we have scaled the DV01-based measure so that it corresponds to a 100 basis point move in the
index.
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The DV 01 expresses the difference between the baseline and a scenario in which credit spreads

(e.g. default risk) rise. By this definition, it is therefore always negative from the perspective of

the seller.

We rely on multiple data sources to identify contractual inputs for pricing positions. We use the

underlying’s reference entity’s term structure of credit spreads, contract currency, floating risk-free

rates, and capital structure of the CDS’ underlying reference obligation. We source credit spreads

from Markit, contract currency from DTCC, the term structure of risk-free rates for contract

currencies from Haver Analytics, and reference entity capital structure from bond information

provided by Bloomberg.
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APPENDIX TABLES

Table IA1: Calibration with Asymmetric Cost of Holding Concentrated Positions

(1) (2)

Panel A: Baseline without dealer removal

Dealer Market

Rd (bps) 133.00 133.00
Customer Market

Rc (bps) 138.12 138.12
Dealer-Dealer fraction (%) 75.0 70.0

Panel B: After removing largest-net-seller dealer

Dealer Market

Rd (bps) 164.06 164.06
Customer Market

Rc (bps) 159.50 157.01
Dealer-Dealer fraction (%) 68.2 61.0

Panel C: Parameters

α 6.06 5.73
φdbuy 0.09 0.11

φcbuy 56.90 41.27

κ 0.365 0.515

Panel D: Dealer Removal Effect

Change in Rd (bps) 31.06 31.06

Notes: This table presents summary statistics of the calibrated model with asymmetric counterparty costs. Panel A reports
the average spread in the dealer market (Rd), the average spread in the customer market (Rc), and the fraction of dealer-dealer
trades. Panel B reports the same moments in Panel A, but after removing the largest net-seller dealer from the economy. Panel
C reports the parameters used, and Panel D reports the dealer removal effect on the average dealer market spreads. Parameters
α, φcbuy , and φdbuy are calibrated to match the average spreads in the dealer and customer market, as well the fraction of

dealer-dealer trades—these are the first three moments in Panel A. Parameter κ is set to match the dealer removal effect in
Panel D to the benchmark calibration. In Column (1), the calibrated model matches the fraction of dealer-dealer trades at
70%, while Colmun (2) matches it at 75%.
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Table IA2: Customer Removal

Benchmark Customer Removal

(1) (2) (3)

Number of dealers 14 14 14

Complete network R (bps) 143.04 143.73 172.52

Rd (bps): 133.00 133.22 142.39

Rc (bps): 138.12 138.58 157.75

zd 0.045 0.047 0.136

Notes: This table reports the number of dealers, the average spreads under the complete network, the average spreads in the

dealer market, the average spreads in the customer market, and the average net position of dealers. We define dealers precisely

in Appendix B. Column (1) reports our benchmark calibration. In Column (2) reports the results after removing a customer

with the same pre-trade exposure as the largest net-seller dealer. Column (3) reports results after removing a customer with

the same net positions as the largest net-seller dealer. Source: Authors’ analysis, which uses data provided to the OFR by The

Depository Trust & Clearing Corporation.
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Table IA3: Dealer Removal Robustness: ω

Benchmark Top 90th prc. Median Bottom

(1) (2) (3) (4) (5)

Panel A: Assuming ω = 0.5

Number of dealers 14 13 13 13 13

Complete network R (bps) 143.04 144.14 143.26 143.01 142.73

Rd (bps): 133.00 164.33 138.60 131.39 123.17

Rc (bps): 138.12 154.05 140.97 137.31 133.13

zd 0.045 −0.091 0.021 0.052 0.088

Panel B: Assuming ω = 3

Number of dealers 14 13 13 13 13

Complete network R (bps) 143.04 143.70 143.17 143.02 142.86

Rd (bps): 133.00 163.87 138.51 131.40 123.30

Rc (bps): 138.12 153.60 140.88 137.32 133.26

zd 0.045 −0.091 0.021 0.052 0.088

‘

Notes: This table reports the number of dealers, the average spreads under the complete network, the average spreads in

the dealer market, the average spreads in the customer market, and the average net position of dealers. We define dealers

precisely in Section 3.2.2. In Column (1) reports our benchmark calibration. In Column (2) reports the results after removing

the largest net-seller. Column (3) reports results after removing one dealer at the 90th percentile. Column (4) reports results

after removing the dealer with the median net position, and Column (5) reports results after removing the dealer that is the

largest net buyer in the baseline model. In Panel A, we report results assuming ω = 0.5, while in Panel B we report the results

assuming ω = 3. In each Panel, given the assumed value for ω, we recalibrate the model following the procedure described in

Section 4.1. Source: Authors’ analysis, which uses data provided to the OFR by The Depository Trust & Clearing Corporation.
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Table IA4: Dealer Removal Robustness: DTCC Dealers

Benchmark Top 90th prc. Median Bottom

(1) (2) (3) (4) (5)

Number of dealers 26 25 25 25 25

Complete network R (bps) 145.11 145.91 145.28 145.10 144.81

Rd (bps): 133.00 148.03 135.75 132.36 126.73

Rc (bps): 139.28 146.93 140.68 138.96 136.10

zd 0.059 −0.010 0.047 0.062 0.089

‘

Notes: This table uses the DTCC definition of dealers and recalibrates the model following the procedure described in Section

4.1. We report the number of dealers, the average spreads under the complete network, the average spreads in the dealer market,

the average spreads in the customer market, and the average net position of dealers. In Column (1) reports our benchmark

calibration. In Column (2) reports the results after removing the largest net-seller. Column (3) reports results after removing

one dealer at the 90th percentile. Column (4) reports results after removing the dealer with the median net position, and

Column (5) reports results after removing the dealer that is the largest net buyer in the baseline model. Source: Authors’

analysis, which uses data provided to the OFR by The Depository Trust & Clearing Corporation.
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Table IA5: Average Dealer CDS Exposure

Method z̄d

Notional, Beta-Weighted 0.045

DV01, Beta-Weighted (%) 0.22

Notes: This table presents some basic summary statistics about the average credit exposure of dealers to the aggregate credit

risk index, denoted by z̄d. Our aggregate credit risk index on each date is the cross-sectional average of all 5-year U.S. CDS

spreads in the Markit database. We define exposure to this index in two ways: (i) a beta-weighted average of the net notional

sold across all CDS positions, with betas computed with respect to the aggregate credit risk index; and (ii) a beta-weighted

average DV01 across all positions, which just measures how much the entire CDS portfolio would lose if there was a one hundred

basis point move in the aggregate credit risk index. See Appendix IA.3.3 for complete details. In all cases, positive values

indicates that dealers are on average net sellers. For all metrics, we compute the exposure of dealers in our sample, then scale

this exposure by their market capitalization. This is what we call a dealer-specific zi. z̄d in each week is the cross-sectional

average of each zi across dealers. The table reports average weekly z̄d over the period January 2010 through December 2013.

Source: Authors’ analysis, which uses data provided to the OFR by the Depository Trust & Clearing Corporation.
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APPENDIX FIGURES

Figure IA1: Five-agent example

This figure represents an economy with five agents, in which agents 1 and 2 are connected to every agent and agent

3, 4, and 5 are not connected to each other. The network matrix in this example is given by Equation (IA20)

1 2

3 4 5
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Figure IA2: Dealer Selection

Panel A Panel B
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Notes: In this figure, we report our selection algorithm outcome for different subsamples. We start with full network matrix

that includes all the existing counterparties, compute who is a dealer based on the algorithm. In a second step, we sort all

counterparties based on degree and then transaction volume. We then interactively remove one counterparty at a time, based on

the previous degree-volume sort. Every time we remove a counterparty, we rerun the algorithm for the remaining counterparties.

In Panel A, we plot the minimized function against the number of remaining agents in this itaractive procedure. In Panel B,

we plot the number of dealers against the number of agents. Source: Authors’ analysis, which uses data provided to the OFR

by the Depository Trust & Clearing Corporation.
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