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Abstract

Markets coordinate the flow of information in the economy, aggregating it through
the price mechanism. We develop a dynamic model of information transmission and
aggregation in financial and other social networks in which continued membership in
the network is contingent on the accuracy of opinions. Agents have opinions about
a state of the world and form links to others in a directed fashion probabilistically.
Agents update their opinions by averaging those of their connections, weighted by how
long their connections have been in the system. Agents survive or die based on how far
their opinions are from the true state. In contrast to the results in the extant literature
on DeGroot learning, we show through simulations that for some parameterizations
the model cycles stochastically between periods of high connectivity, in which agents
arrive at a consensus opinion close to the state, and periods of low connectivity in
which agents’ opinions are widely dispersed. We add varying degrees of homophily
through a model parameter called tribal preference and find that crash frequency
is decreasing in the degree of homophily. Our results suggest that the information
aggregation function of markets can fail solely because of the dynamics of information
flows, irrespective of shocks or news. (JEL codes: D83, D85, Z13)
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1 Introduction and background

Information is the life blood of the financial system. Indeed, efficient markets theory
and information economics have long argued that information aggregation is the key
role of markets in the economy. Prices in well-functioning, competitive markets reflect
all available information and lead to efficient resource allocations. The economy’s
ex-post performance is then dependent on how accurate the information that led to
this allocation was. If the information aggregation function of markets breaks down,
then market failures can occur. In this paper we show that information aggregation
can fail endogenously due to the dynamics of information flows among agents.

Individuals in society have opinions on a wide variety of topics. Some are economic
or financial in nature, such as the value of a particular good or service, while others
concern politics, social norms, entertainment, and so on. Decisions and actions are
affected by opinions. Therefore, studying the dynamics of information flows and
the processes by which information is aggregated is essential to understanding the
macroscopic characteristics of both social and economic networks, regardless of the
subject matter of agents’ opinions or the precise mechanisms by which agents interact.
Accordingly, social network models abstract from these details, often proposing simple
mechanisms for how agents interact and how they use information gained to update
their beliefs. While highly stylized, these models can provide important insights on
features observed in real networks.

A central object of study in social networks is the evolution of opinions, particularly
whether agents’ opinions converge to a consensus and, if so, what that consensus is. In
models with a fixed number of agents and a fixed network topology, a typical result
is that convergence to a consensus is obtained in the long run, regardless of whether
agents update rationally using Bayes’s rule or naively by, for example, averaging the
opinions of others (see, for example, Acemoglu and Ozdaglar (2011)). But what if
accuracy matters, in that agents with inaccurate opinions fail and exit the system with a
higher probability than those with relatively more accurate opinions? Such a situation
can arise, for example, in a business context. If accurate information provides more
value than inaccurate information, and thus leads to higher expected profits, then over
time businesses with inaccurate information will fail due to competitive pressures.

We develop a dynamic model of information transmission and aggregation in
social networks in which continued membership in the network is contingent on the
accuracy of opinions. Agents in the model have an opinion about some fixed state of
the world and form links to other agents probabilistically. Information is shared across
connections and agents update their opinions according to a DeGroot learning rule,
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that is, by continuously averaging those of their connections. The weights agents place
on others’ opinions depend on how reliable their information is judged to be. The
reliability of an agent’s opinion is proportional to how long it has been in the system.
After updating their opinions, agents survive to the next period with a probability
depending on how far their opinions are from the state of the world. Agents that do
not survive fail and exit the system, and their information is lost. A failed agent’s
connections are severed, and the agent is replaced by an unconnected agent with
random opinions.

Our model naturally incorporates DeGroot learning in a dynamic model of network
formation in which the network topology dynamically depends on how accurate
agents’ opinions are with respect to an exogenous state of the world.

While our model is an abstract social networks model with no reference to specific
applications, one can apply it in financial settings. One example concerns leverage
(see section 3). The optimal level of leverage in the economy is unknown and, given
that the economy is large and complex, it is reasonable to assume that financial in-
stitutions update their opinions on leverage by averaging those of other institutions,
weighted by how long they have been in business. Moreover, there are consequences
to having the wrong level of leverage: leverage levels too high or too low will lead to
underperformance relative to peers, and possibly eventual failure due to competitive
pressures. Another financial example concerns equity analysts, who publish forecasts
on the performance of companies. Analysts who provide more reliable signals of a
company’s future performance develop reputations and are trusted more than other
analysts. Analysts who do not produce reliable signals may leave the profession.

Our main result is that certain parameterizations of the model produce cyclical
dynamics of information sharing. That is, the system alternates between a state of high
connectivity, in which agents have achieved consensus opinions that are close to the
state of the world, and a state of low connectivity, in which agents’ opinions are widely
dispersed. These cycles are stochastic in that they occur irregularly and last for varying
amounts of time. This result is novel in the literature on DeGroot learning, directly
contrasting with the asymptotic convergence of opinions to a consensus that is typical
of other models (see, among others, DeGroot (1974), DeMarzo et al. (2003), and Golub
and Jackson (2010)).

In the classical DeGroot (1974) model, agents with opinions about a state of the
world are connected in a static network. Agents iteratively update their opinions by
repeatedly taking weighted averages of the opinions of their connections. The main
result from the literature is that, under mild assumptions on the nature of the network
of connections, agents in the long run converge to a common opinion or consensus.
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This is an intuitive result; if opinions are ordered, then agents with relatively high
(low) opinions will have neighbors with low (high) opinions, and these will average
out with the repeated updating over time.

DeMarzo et al. (2003) argue that DeGroot updating is a boundedly rational form of
learning, as opposed to fully rational (Bayesian) forms of learning. Our motivation for
using DeGroot updating rather than Bayesian learning is based on both conceptual
and empirical considerations. Social networks are often large and extremely complex,
which can render fully rational Bayesian approaches infeasible, as they may be too
demanding on the agents (Golub and Jackson (2010) and Acemoglu and Ozdaglar
(2011)). Boundedly rational or naive learning methods, such as DeGroot updating,
might then be viewed as more realistic behavioral rules. Moreover, recent empirical
evidence supports the view that naive learning methods such as DeGroot updating
more realistically reflect the actual behaviors of agents than Bayesian learning methods
(Mueller-Frank and Neri (2013), Grimm and Mengel (2014), and Chandrasekhar et al.
(2015)).

In our model, a given agent forms a directed link with another agent in a given
period according to an exogenous probability that is common across agents. For each
agent at most one new link can be formed in a given period. Information is transmitted
along all connections and, at any fixed time, each agent updates its opinion by taking
a weighted average of those of its connections. The weight for each connection is
proportional to its age, which is the number of consecutive periods for which it has
been in the system. Links are destroyed when agents exit the system, i.e. when
they “die” or “fail,” which happens with a probability depending on how far their
opinions are from the state of the world. There is also a random component of agent
failure in our model, irrespective of proximity to the true state (see also Jackson and
Watts (2002) and Staudigl (2013)). This random component reflects the notion that
some agents may simply leave the group regardless of their opinion for idiosyncratic
reasons, such as death or moving on with their lives. Thus the so-called interaction
matrix, which in DeGroot learning contains weights that agents place on the opinions
of others in the averaging process, is time-varying, as agents continually reassess the
relative trustworthiness of the information provided by others. This contrasts with
the standard DeGroot model in which the interaction matrix is assumed constant over
time. In addition, unlike Hegselmann and Krause (2002, 2005), Mirtabatabaei and
Bullo (2012), and Weisbuch et al. (2002), who model time-varying interaction matrices
with weights depending on similarity of opinions, agents in our model connect and
transmit information in a directed fashion according to an exogenous probability and
weight information depending on how long connections have been in the system.
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Our paper also contributes to the literature on dynamic network formation (see,
among others, Bala and Goyal (2000), Watts (2001), Jackson and Watts (2002), Jack-
son and Rogers (2007), Skyrms and Pemantle (2009), and Staudigl (2013)). Models
in this literature propose and analyze mechanisms of dynamic network formation in
which agents form and sever links through time. Bala and Goyal (2000) study directed
communication networks in which the link formation process is governed by agents
weighing costs of maintaining links against their benefits. Watts (2001) studies conver-
gence properties in a network with a deterministic dynamic, while Jackson and Watts
(2002) consider a wider class of models under stochastic evolution. Staudigl (2013)
considers a general model of an interaction game in which the interaction probabilities
are time-varying functions of the players’ actions. While agents in these models form
and sever links strategically, our agents have no direct control over how links are
formed and severed. This is consistent with their naive DeGroot updating learning
rule and has a similar motivation: in large and complex networks, it is reasonable to
think that agents are limited in their ability to assess other agents and the ramifications
of connecting to them prior to learning about them. Moreover, as there is no cost to
connecting in our model, agents should want to connect to as many other agents as
possible. It is only after the link has been made that the trustworthiness of an agent’s
information is assessed based on the proxy of how long the agent has been in the
system.

After setting the model on a foundation for analysis by proving that it is mathe-
matically represented as an ergodic Markov chain (see section 4), we show through
simulations that the dynamics of the network can be the source of cycles of information
sharing. That is, under a range of parameterizations, the model produces cycles of
convergence and divergence of opinions, which occur despite holding the state of the
world fixed. A cycle begins with the system in a state of high interconnectivity in
which agents have achieved nearly consensus opinions that are close to the state of
the world. Over time some agents die, either because their opinion is not precisely
equal to the state of the world or because of exogenous reasons. The connections of
dead agents are severed and they are replaced by naive ones with relatively inaccurate
opinions. If such agents are able to connect to others, thereby spreading their relatively
poor information, then their poor information can propagate quickly to the rest of the
agents, causing the opinions of the rest of the agents to drift away from the state of
the world. This can precipitate more deaths and the process can feed back onto itself,
eventually causing a nearly complete collapse of the network. This is the process by
which the state transitions to one of low connectivity in which agents’ opinions are
widely dispersed. We call such a transition from a state of high to low connectivity a

5



crash. Intuitively, the crash occurs because a very old interconnected agent with good
information dies and is replaced by a relatively uninformed agent, who then spreads
its poor information though the links it forms. Eventually a period of rebuilding occurs
in which connections are reformed and the distribution of opinions narrows, arriving
at a high-connectivity state. The cycle then repeats.

We continue our study by running a comparative statics analysis on the per-period
probability of connection and the exogenous probability of failure. The results suggest
that the level curves of crash frequency are approximately linear in these parameters.

Next, we extend the model to incorporate homophily, which is the widespread
finding in the sociology and social networks literature that agents associate more with
other agents that are similar to them and less with those that are not. Homophily has
been observed across many agent characteristics, including age, gender, race, education
level, profession, political affiliation (see McPherson et al. (2001) for a review). Since
differential preferences for connecting to agents affects the link formation process,
homophily influences the flow and aggregation of information. Golub and Jackson
(2012) present and analyze a model with homophily and find that the time it takes to
reach consensus in static models in which agents update beliefs using an averaging
process such as DeGroot updating is increasing and convex in homophily.

We analyze the effect of homophily on network stability in a simple extension
wherein we introduce the notions of tribe and tribal preference. A tribe is a pre-
specified subset of the agents that are alike in some way that affects their propensity to
connect with one another instead of the general populace. Such a binary grouping of
agents as either “us” or “them” affecting the linking process has been shown in some
networks to be fairly accurate (see, for example, Marsden (1987, 1988)). Conditional
on connecting in a given period, a member of the tribe connects to another member
of the tribe with a certain probability that we call tribal preference. If tribal preference
is low, then agents connect randomly to other agents and do not discriminate among
possible sources of information. Conversely, if tribal preference is high, then agents
trust members of their tribe more and prefer to collect information from them.

We show that the dynamics of the extended model are governed by the relationships
among tribal preference, the per-period probability of connection, and the exogenous
probability of failure. We find that, not surprisingly, within-tribe connectivity increases
as tribal preference increases. We also find that crash frequency is decreasing in
tribal preference. For low levels of tribal preference, where all agents in the tribe are
connecting indiscriminately among the larger population, the agents are exposed to a
greater number of agents. The more agents there are, the higher the probability that at
least one agent dies (either for exogenous reasons or because of imperfect opinions). If
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a dead agent is replaced by a new agent whose information is poor relative to other
agents but also accurate enough in an absolute sense to survive and connect, then in a
highly connected state this relatively poor information can propagate widely, reducing
the accuracy of others’ information, leading to more deaths and eventually a crash.
Conversely, for high levels of tribal preference, all agents within the tribe are mainly
connecting to themselves. As the tribe is a proper subset of the general population, this
leads to fewer chances for a dead agent’s replacement to infect the tribe and cause a
crash. Over periods of the same length, lower tribal preference thus leads to a greater
number of crashes.

2 A dynamic model of information flows

Agents in our model operate in a discrete-time environment over an infinite horizon.
An agent’s objective in a given period is to maximize the probability of surviving to
the next period. Each agent has a opinion k ∈ (0, 1) ∩Q about a state of the world
k∗ ∈ (0, 1) ∩ Q, where Q is the set of rational numbers. The true state k∗ is fixed
and unknown to all of the agents. In a financial context, for example, k could be the
(reciprocal of the) agent’s leverage ratio, in which case k∗ would be the (reciprocal
of the) optimal leverage ratio in the economy. An agent’s probability of survival to
the next period depends on how close its opinion k is to k∗. To improve their chances
of survival, agents connect and share information that they then use to update their
opinions.

Specifically, the model contains N ≥ 2 agents. Time is discrete and is denoted by
t ∈ N ∪ {0}, where N is the set of natural numbers. At initial time t = 0, opinions
are drawn independently across agents from a uniform distribution on (0, 1) ∩Q. Let
ki,t ∈ (0, 1) ∩Q be the opinion of agent i at time t. In addition to its opinion ki,t, each
agent is aware of its age ai,t ∈N, which is the number of consecutive periods for which
it has been alive. Denote by k(t) and a(t) the N-vectors of opinions and ages of agents,
respectively, at time t.

Agents adjust their opinions to improve their chances of survival to the next period.
This adjustment is based on information learned by connecting to other agents. At birth,
agents have zero connections. Then, in each period in which it is alive, with probability
pc ∈ (0, 1), a given agent i creates a directed link with another, randomly chosen agent
j. Information transmission along a connection between agents is one-way, that is,
information flows from agent j to agent i, with agent i learning agent j’s k-value and
age, (k j,t, aj,t). An agent’s information set at any point in time therefore contains its
own opinion and age as well as the opinions and ages of all of its in-links (but not
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of its out-links). Using this information, agents update their opinions according to a
DeGroot-type learning rule,

k(t + 1) = W(t)k(t), (1)

where W(t) = (wij(t)) is the weight matrix with entries defined by

wij(t) =
aj,t/ ∑k∈N(i,t) ak,t, j ∈ N(i, t)
0, j /∈ N(i, t)

{
(2)

and N(i, t) is the union of the in-links of agent i and itself at time t. Each agents’
updated opinion is thus a weighted average of the opinions of its in-links (and itself),
weighted by age.1

Survival depends on the distance between opinions and the state of the world
k∗ ∈ (0, 1) ∩Q. The closer an agent’s opinion is to k∗ in a given period, the higher the
probability that the agent will live to the next period. Formally, if ki,t is the opinion of
agent i at time t, then the probability pd

i,t that the agent will die at time t is given by

pd
i,t = β0 + (ki,t − k∗)2, (3)

where β0 is a positive parameter of the model chosen such that pd ∈ (i,t 0, 1). The
positivity of β0 implies that there is a positive probability of death independent of the
accuracy of the agent’s opinion. That is, there are exogenous shocks where agents die
with a probability independent of the relationship between their opinions and the state
of the world.

When an agent dies, its connections with all other agents are severed immediately,
and thus the information embedded in its opinion and age are lost to all other agents.
A dead agent is replaced in the next period by a new agent with no initial connections
and initial opinion uniformly drawn from (0, 1) ∩Q. Thus the population of agents
remains fixed.

2.1 Optimization and averaging based on age

The objective of each agent is to survive to the next period. In that sense, the model
could be viewed as a series of one-period models. Here we investigate whether

1Agents do not take into account the paths or evolution of opinions of their present or past connections
in their formation of opinions. This information is embedded in previous opinions. Agents are thus
memoryless. There are various ways to incorporate memory. For example, one could exponentially
weight past information. But this introduces additional parameters and complexity. Moreover, the
“perfect memory” case, where agents perfectly remember their entire past, has qualitatively similar
results to those of the present model.
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an agent’s opinion, which it updates heuristically based on a weighted average of
the opinions of its connections with weights proportional to its connections’ ages,
is optimal with respect to its objective. We show that, under some assumptions, an
agent’s opinion in any given period is approximately its maximum likelihood estimate
of the state of the world k∗. Weighting based on age is thus approximately optimal.

Proposition 2.1. Fix an arbitrary time t ∈ N and an arbitrary agent i ∈ {1, . . . , N}. Let
{(k j,t, a n

j,t)}j=1 be the information set for agent i at time t assembled from its in-links (and
itself) at t. Consistent with the model, assume that agent i is unaware of the history of all
agents’ opinions and actions prior to t, and that, consequently, it assumes all of its connections’
opinions prior to t are equal to their values at time t. Then,

ki,t+1 =
∑n

j=1 aj,tk j,t

∑n
j=1 aj,t

(4)

is the first-order approximation of the agent’s maximum likelihood estimate of k∗.

Proof. To simplify notation we omit the t-subscripts. Using (3), the assumptions imply
that the probability that an arbitrary agent j ∈ {1, . . . , N} has age aj is given by

P agent j has age aj = 1− β0 − (k j − k∗)2 aj .
( ) ( )

Moreover, the joint probability that all agents have their respective ages is given by the
product of the above over all agents, which results in the likelihood function

f
(
k j, aj; j = 1, . . . , n | k∗

)
=

n

∏
j=1

(
1− β0 − (ki − k∗)2)aj .

Let L be the log-likelihood function, i.e.

L = ∑
i=j

aj · log 1− β0 − (k j − k∗)2 .
n ( )

While L is continuously differentiable, maximizing it with respect to k∗ requires finding
the roots of a (2n− 1)−degree polynomial. Instead, we recall the Taylor series

log(1− x) = −
∞

∑
n=1

xn

n
= −x− x2

2
− x3

3
− · · · ,

and use it to find the first-order Taylor expansion of L, namely

L′ = −
n

∑
j=1

aj
(

β0 + (k j − k∗)2) .
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Then, differentiating L′ with respect to k∗, we obtain

∂L′
∂k∗

= 2
n

∑
j=1

aj
(
k j − k∗

)
.

Solving ∂L′
∂k∗ = 0 yields the critical point given by (4) above, which is easily seen to be

the unique maximum of L′.

3 Financial interpretations

While our model of information flows among agents is abstract, there are several
natural applications of it in a financial context. One application concerns leverage. In
its simplest form, leverage refers to the use of borrowed funds to obtain more economic
exposure than would be possible using only one’s capital. One motivation is to enhance
returns. Suppose you borrow $80 against capital of $20 and invest the sum in some
asset. You own an asset worth $100 using capital of $20 and are thus leveraged 5-to-1,
with a leverage ratio of 5. If you sell the asset when it appreciates 5% to $105 and then
pay back your loan of $80 (assuming zero interest for simplicity), then you are left with
$25, a 25% return on your capital of $20. Thus a 5% return on the asset implies a 25%
return on your capital if your leverage ratio is 5. The risk is that leverage magnifies
negative returns as well. If you sell the asset after it depreciates 5% to $95 and pay back
your loan, you have $15, a -25% return on your capital.

Geanakoplos (1997, 2003, 2010) argues that leverage is an equilibrium state variable
in the economy. However, the optimal level of leverage, that is, the equilibrium level
of leverage that is a consequence of agents’ portfolio choice problems, is unknown.
Because of its returns-magnifying property, too much leverage can risk solvency. But
in a competitive economy, too little leverage can lead to underperformance.

Our model can be applied in this setting. Consider a set of financial institutions,
such as banks or hedge funds. The financial institutions are the agents in the network.
Each financial institution’s opinion, k, is the reciprocal of its leverage ratio, and the state
of the world, k∗, is the unknown, reciprocal of optimal leverage ratio.2 Connections
are formed between institutions in the course of doing business. For example, a direct
connection from fund j to bank i is formed as bank i learns fund j’s leverage when
the fund applies for financing from the bank. Alternatively, connections between
institutions arise as a result of negotiations about collateral agreements, where leverage
might be used to assess credit risk of counterparties. The limit on connections to

2An institution’s leverage ratio is generally in [1, ∞), so that the reciprocal of its leverage ratio is in
(0, 1].
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one per period with a probability of connecting pc reflects technological capacity for
handling new business and information processing.

Most economic and financial models posit that agents act rationally. But in a large
network like the global financial system, where fully rational learning may be infeasible
or impractical, the DeGroot updating rule, in which the institution updates its leverage
based on the choices of other institutions weighted by how long they have survived, is
a reasonable behavioral rule.

The link destruction process is also naturally interpreted in the context of leverage.
Agent death represents going out of business because of a suboptimal amount of
leverage, resulting from poor performance relative to peers and ensuing competitive
pressures. The parameter β0 reflects going out of business for reasons unrelated to
leverage, such as operational failures. Finally, birth of agents upon death represents
new entrants.3

Another application of our model concerns equity analysts. Equity analysts publish
forecasts of earnings and other performance-related measures of companies. In the
application of our model, the agents in the network are these equity analysts, who for
simplicity we will assume are all covering the same company. Each analyst’s opinion k
represents its opinion on the future performance of the company, and k∗ represents
the unknown, true future performance. As there are typically many analysts across
the industry that analyze a given company, random connections among analysts are
made when their opinions are published or when they otherwise communicate. When
connections are made, it is reasonable to assume that analysts update their opinions,
using age or length of time in the industry as a proxy for another analyst’s reputation
and thus trustworthiness. Analysts exit the network and sever their ties for exogenous
reasons such as retirement or moving on to a different job, as well as possibly for
inaccurate opinions.

Finally, another application of our model concerns the network of information flows
that results from the piecing together of disparate information in what is called the
mosaic approach to investing. The agents of the network are investors, who evaluate
the prospects of a company by piecing together things such as the fragility of supply
chains, the availability of funding to meet capital expenditures, new entrants into the
field, disruption from technological innovations, and changes in consumer preferences.
This information will come from different agents, and the accuracy of the information

3The model assumes agents are homogeneous in their behavioral rule, objective, probability of con-
nection, prior distribution of opinions, exogenous probability of death, and so on. These assumptions are
idealizations made to simplify exposition, implementation, and analysis, as well as possible calibration
of the model to data. In reality agents are heterogeneous, in these respects and others.
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will dictate the probability of survival for the enterprise. The state of that enterprise
will in turn be one part of the mosaic that is being filled out by other agents.

4 View of the model as a Markov chain

We show that the model can be viewed in a mathematical context as an ergodic Markov
chain. Such a representation enhances our understanding of the model and provides a
foundation for our subsequent simulations.

4.1 Relevant background on Markov chains

Before elaborating on the connection between the model and ergodic Markov chains,
we need to introduce some terminology. We will only introduce what we need. The
analysis of Markov chains is well-developed; comprehensive treatments on the subject
and its applications can be found in Kallenberg (2002), Pardoux (2008), and Ibe (2009),
among others.

A Markov chain is a stochastic process X = {Xt; t ∈N} such that, for all t ∈N, the
conditional distribution of Xt+1 given the history X0, X1, . . . , Xt equals its conditional
distribution given the present, i.e. given Xt. The state space S associated to a Markov
chain is the range of the stochastic process X , and a Markov chain is called finite
(countable) if its state space is finite (countable). To each Markov chain one associates a
transition probability function p : N× S× S→ [0, 1] for which p(t, i, j) is the probability
of moving from state i to state j at time t. The chain is called time-homogeneous if this
probability is independent of the time t, i.e. if the function p is independent of t.

The analysis of Markov chains begins with the classification of states along a
number of dimensions. Suppose a Markov chain has initial state X0 = x and define
Tx = inf{t ∈N : Xt = x}, that is, the first time the chain returns to x. If the probability
(conditional on the chain starting at x) that Tx is finite is one, then the state x is said
to be recurrent. Otherwise, x is called transient. For a recurrent state x, if the stronger
statement that the expected value of Tx (conditional on the chain starting at x) is finite
holds, then x is called positive recurrent. Let Rx be the set of integers n for which the
probability, conditional on starting at x, of returning to x in n periods is positive. The
state x is called aperiodic if the greatest common divisor of Rx is one.

When all states in the state space satisfy a certain property, we say that the chain
itself satisfies the property. For example, if all states are aperiodic then we say the chain
is itself aperiodic. It turns out this type of inheritance is common with Markov chains.
Recurrence, for example, is a class property of the Markov chain, that is, the state space
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can be partitioned into a set of equivalence classes wherein each class has the property
that all states within it are either recurrent or transient. The equivalence relation ∼
producing this partition is defined as follows: two states communicate, written x ∼ y, if
they are accessible from each other, where y is accessible from x, and denoted by x → y,
if there is a (strictly) positive probability of going from state x to state y in finite time.
A Markov chain is said to be irreducible if its state space under the equivalence relation
∼ can be partitioned into a single equivalence class. An irreducible, positive recurrent,
and aperiodic Markov chain is said to be ergodic.

An ergodic Markov chain has special asymptotic properties. For every t ∈ N let
ft(x|x0) denote the empirical frequency that describes how often the chain has been in
state x through time t, given that it was initially in state x0. An ergodic Markov chain
has the property that this empirical frequency distribution converges almost surely to
a unique limiting distribution independent of the initial state.4 That is, there exists a
probability distribution λ on S such that

lim
t→∞

ft(x|x0) = λ(x),

where the convergence is almost surely. In fact, a stronger statement can be made. For
arbitrary states x, y ∈ S, it holds with probability one that

lim
t→∞

P(Xt = x|X0 = x0) = λ(x).

Thus for an ergodic chain, if t is sufficiently large, then the probability of being in a
state x at time t is approximately equal to the probability ft(x|x0) of being in state x
through time t.

4.2 Reformulation of the model

We reformulate the model described in section 2 as a Markov chain X on a countable
state space whose transition probability is characterized by an algorithm that we
specify below. The Markov chain X is governed by the following set of parameters.

Assumption 1. We have the following assumptions on the parameters of X :
(a) Number of agents: N ∈N√
(b) State of the world: k∗ 1∈ [ 2 , 1− β0)

(c) Probability of connecting: pc ∈ (0, 1)
(d) Death probability intercept: β0 ∈ (0, 1)

4Some define ergodicity of a Markov chain as precisely this, i.e. that the limiting distribution of the
empirical frequency is independent of the initial state.
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The state of the Markov chain X at any given time is the set of opinions and ages of
all the agents, together with the adjacency matrix describing the connections among
agents.

Assumption 2. We have the following assumptions on the state variables of X :
(a) k-value vector:~k = (k1, . . . , kN) ∈ (Q∩ (0, 1 N))

(b) Age vector: ~a = (a1, . . . , a N
N) ∈N

(c) Adjacency matrix: M~ = (mij), where mij = 1 if there is a directed link from i to j, i.e. i is an
in-link of j. We adopt the convention that mii = 1 for all i. We write M~ = [m~ 1 m~ 2 · · · m~ N ],
where each m~ i is the column of M~ . The set of in-links of agent i correspond to the nonzero
entries of the column vector m~ i.

The following algorithm is a mathematical description of the model described in
section 2. The algorithm describes the transition probability function from one state to
another in the Markov chain X .
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Algorithm: Given (~kt−1,~at−1, M~ t−1) at time t.
A1. Check Death: Simultaneously, determine if each agent i, i =

1, . . . , N, dies or survives. The probability that agent i dies is
given by

P (agent i dies at t) = β0 + (ki,t−1 − k∗ 2) ,

where ki,t−1 is the opinion of agent i.
(a) If agent i dies, then set

• k̂i,t−1 = U, where U is uniformly drawn on (0, 1)∩Q;
• ai,t = 1; and
• mii = 1 and mij = mji = 0 for all j = i.

(b) If agent i survives, then increment its age:
• ai,t = ai,t + 1.

cA2. Connect: Agents connect to other agents. Let Ni denote the
set of agents to whom agent i is not connected, i.e.

c { }
Ni = Aj : mji = 0 .

cIf Ni = ∅, then there are no agents left to whom agent i can
cconnect. If Ni is nonempty, then agent i connects to a member

of it with probability pc. If agent i connects to agent j, then set
mji = 1.

A3. Update: Agents updates their opinions.

ki,t = ∑ wj,tk j,t−1, wj,t = aj,t/ ∑ ak,t
Aj∈Ni Ak∈Ni

Steps A1-A3 determine (~kt,~at, M~ t).

6

4.3 Discussion of attainable states

The above algorithm naturally determines the set of states that are attainable in the
model. For example, each agent can connect to at most one other agent in any given
period, and an attainable state (~k,~a, M~ ) must have the property that

ai ≥
N

∑
j=1

mji, i = 1, . . . , N. (5)
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Moreover, it is easy to see that not every conceivable state satisfying (5) is attainable.
For example, consider a 2-agent system and a state (~kt,~at, M~ t) at time t given by

~kt = (1/4, 3/4), ~at = (1, 1), and ~Mt =
1 0
1 1

.

( )
(6)

This state requires that both agents die at time t, that the first agent connects to the
second agent following their rebirth, and that opinions update to~k = (1/4, 3/4). Upon
the deaths of the agents, the newly drawn opinions (k̂1,t−1, k̂2,t−1) of the two agents
must satisfy ( ) ( ) ( )

1
4
3
4

=
1
2 0
1
2 1

′
k̂1,t−1

k̂2,t−1
,

which has the unique solution k̂ 1 ˆ1,t−1 = − and k 3
2,t−1 = . Since k̂1,t−1 ∈ (4 4 / 0, 1) ∩Q,

this state is not attainable.
Note that, as in the algorithm, we use the symbol ·̂ to signify that the associated

value of k represents a newly drawn opinion for a reborn agent. Thus k̂1,t−1 is the new
draw for agent 1 after its death at time t (step A1 in the algorithm, before it updates
its opinion in step A3), while k1,t−1 is the opinion of agent 1 at the end of the previous
period t− 1 (upon completion of step A3 at time t− 1, just prior to its death in step A1
at time t).

For more insight on attainable states, consider a 2-agent system and a state at time
t with opinions vector~kt = (k1,t, k ~2,t), age vector~at = (3, 1) and adjacency matrix Mt

equal to the one in (6). This state requires that the first agent dies three periods prior
(step A1 at time t− 2), the second agent dies in the most recent period, and the first
agent then connects to the reborn second agent.

The opinions of the agents at time t− 1 must satisfy(
k1,t

k2,t
=

3
4 0
1
4 1

′
k1,t−1

k̂2,t−1
,

) ( ) ( )
(7)

where again k2,t−1 denotes the newly drawn opinion for agent 2. This system has a
unique solution given kt since the matrix in (7) is invertible. If the solutions are not
between 0 and 1, then the state is not attainable. If they are, then, in particular, the
newly drawn opinion k̂2,t−1 for the second agent must equal k2,t.

Observe that the second agent’s opinions and connections prior to the period in
which it dies are irrelevant. This is because when it dies its connections are lost, its
age is reset, and its opinions are redrawn. Moreover, the second agent’s opinions and
connections prior to its death are also irrelevant to the first agent. To obtain an age of 3

ˆ
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at period t, the first agent must die at the beginning of period t− 2, at which time it is
reborn with age 1 and newly drawn opinions. Agent 2 either lives or dies in period
t− 2 and agents 1 and 2 either connect or do not. In period t− 1, agent 1 lives but
agent 2 either lives or dies, and again, either the agents connect if they were previously
unconnected, or they do not. None of this matters for the attainability of the state. For
the sake of argument, suppose that agent 2 has an age of 5 at time t− 2 and that agent
1 connects to agent 2 in that period. Then

~at−2 = (1, 5), ~at−1 = (2, 6), and ~Mt−2 = ~Mt−1 =
1 0
1 1

.

( )

Since equation (7) shows the evolution from t− 1 to t, we must consider the evolution
from t− 3 to t− 1. After some computations we obtain that(

k1,t−1

k2,t−1
=

1
24 0
23
24 1

′
k̂1,t−3

k2,t−3
,

) ( ) ( )
(8)

which, in turn, has a unique solution that, if between 0 and 1, determines the newly
drawn opinions, k̂1,t−3, of agent 1. However, this complicated setup is unnecessary
when merely considering whether a state is attainable. The reason is the Markovian
nature of the model. Another path that is equivalent from the perspective of attainabil-
ity, i.e. that obtains opinions at time t equal to the right side of (7), is for agent 1 to be
unconnected to agent 2 in the periods before the death of agent 2, thus with constant
opinions. In this case, its newly drawn opinions, k̂1,t−3, for agent 1 after its death are
equal to k1,t−1 from (7).

If existence of agent 2 is irrelevant to agent 1 before the death of agent 1, then it
is reasonable to think that the evolution of the model before the death of agent 1 is
also irrelevant. This is true. The behavior of the model preceding three periods ago
has no influence on the attainability of a state. This is because to obtain the age vector
~at = (3, 1) all agents must die at some point in the last three periods, which severs their
connections. They must then be reborn with newly drawn opinions. Therefore, the
opinions, ages, and connections in all preceding periods are irrelevant. With respect to
attainability, agents are irrelevant before their deaths.

Generally, the set of possible paths to a state (~kt,~at, M~ t) is mainly constrained by
the age vector~at and adjacency matrix M~ t. These, in turn, constrain the set of possible
opinion vectors~kt. To see this, consider that the components of the age vector~at set the
times prior to the current period at which the agents must have died. If, for example,
~at = (5, 3, 2), then the first, second, and third agents must have died 5, 3, and 2 periods
ago, respectively. By the above discussion, all periods before the period at which the
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oldest agent (according to~at) died are irrelevant to the attainability of the state. Given
this and (5), there are finitely many sequences of adjacency matrices that result in M~ t.
Enumerate the possible paths of {~as, M~ t

s}s=t+1−a , where t denotes the current period
(N)

and a(N) denotes the maximal value of~a. Next, fix such a path and examine whether
there exists a viable sequence {~k t

s} ~ ~
s=t+ ~1− If (a of opinions. so, then the state kt, at, Mt)

(N)

is attainable by traversing this path, provided it has positive probability (the state
could also be attainable along other paths). If no viable sequence of opinions can be
found for all paths, then the state is not attainable. Observe that the 2× 2-matrices in
(6), (7), and (8) depend on the age vectors and adjacency matrices in the intervening
periods, but not on the opinions vectors. It is straightforward to show that, for periods
in which deaths do not occur,

~kt = f (~at, ~Mt)~kt−1

= f (~at, ~Mt) f (~at−1, ~Mt−1)~kt−2

= · · ·

= f (~at, ~Mt) f (~at−1, ~Mt−1) · · · f (~at−s+1, ~Mt−s+1)~kt−s

= F
(
{~an}t

n=t−s+1, { ~Mn}t
n=t−s+1

)
~kt−s,

where f is the weight matrix W in (2) and F is the composition of weight matrices.
However, such a recursion does not hold in periods in which agent deaths occur.
Instead, one appeals to backward induction. Let a(1) denote the minimal age in~at. The
last agents die in period t + 1− a(1), at which time they are reborn with newly drawn
opinions. Opinions at time t + 1− a(1) must then satisfy

~kt = F {~an}t
n=t+2−a(1) , { ~Mn}t

n=t+2−a(1)
~̂kt+1−a(1) ,

( )
~̂where kt+1−a(1) indicates the vector including these newly drawn opinions and with

other components given by those in ~k1,t+1−a(1) . The matrix F, which depends on
the fixed sequence of age vectors and adjacency matrices under consideration, will
determine whether there is a solution such that all opinions are between 0 and 1. If
not, then the state is not attainable along this path. We then discard this path, consider
a different path of {~as, M~ t

s}s=t+1−a , and start again. If, on the other hand, a viable
(N)

solution is found, then we continue. In this case, let a(2) denote the second-least value
in~at. The corresponding agents die in period t + 1− a(2), at which time they are reborn
with newly drawn opinions. Opinions at time t + 1− a(2) must satisfy

~kt+1−a(1) = F {~an}
t+1−a(1)
n=t+2−a(2)

, { ~Mn}
t+1−a(1)
n=t+2−a(2)

~̂kt+1−a(2) .
( )
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Again, if a solution exists and is such that all opinions are between 0 and 1, then
continue. If not, then the state is not attainable along the specific path. Continue in like
manner until all agents are considered. If viable solutions exist for all times at which
deaths occur, then the state is attainable along the path.

4.4 Ergodicity

Finally, we prove that the Markov chain X is ergodic. Ergodicity of the Markov
chain representation of our model provides a foundation for the use of simulations to
accurately estimate population parameters and other quantities of interest. In essence, a
single time series of sufficient length is representative of the entire underlying process.

Theorem 4.1. The Markov chain X is irreducible, aperiodic, and positive recurrent. It is thus
ergodic.

Proof. First, we show that X is irreducible. That is, if (~k,~a, M~ ) and (~k′,~a′, M~ ′) are
attainable (having dropped the t-subscripts), then

(~k,~a, ~M)→ (~k′,~a′, ~M′).

It suffices to exhibit a path starting at state (~k,~a, M~ ) that has a positive probability
of reaching the target state (~k′,~a′, M~ ′) in a finite number of periods. Write the target
age vector ~a′ = (a′1, . . . , a′ )N and let t∗ be the maximal age in the target state, that
is, t∗ = maxi a′i. By the discussion on attainability (see section 4.3), there is a path
{~a , M~ t

t s}s=t+1−t∗ and an associated viable sequence {~k t
s}s=t+1−t∗ of opinions such that

the state is attainable. This sequence of states has positive probability since β0 > 0 and
pc ∈ (0, 1). (Here and throughout, we consider a transition to a state (~k,~a, M~ ) to have
positive probability if the transition to (~k± ε1,~a, M~ ), where 1 is the N-vector of ones,
has positive probability for any ε > 0.)

Next, we show that X is aperiodic. Since X is irreducible, it suffices to show
that there exists one state that is aperiodic (see, for example, Pardoux (2008), Lemma
6.2). That is, it suffices to find one state s for which P(Xt+1 = s|Xt = s) > 0 for an
arbitrary t ∈ N. Consider the state s = (~k,~a, M~ >

0 ) where~a = (1, 1, . . . , 1) , M~ is the
N-dimensional identity matrix, and~k = k N∈ (0, 1) is fixed but arbitrary. The event
that Xt+1 = s0 given that Xt = s0 corresponds to the event in which every agent dies,
no connections are made, and the vector of opinions remains the same. This event has
positive probability since agent deaths are independent, the probability of death of a
given agent in a given period is strictly between zero and one, the probability of an
agent connecting in a given period is less than one, and the event that k-values remain
the same has positive probability.
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Finally, we show that X is positive recurrent. Since X is irreducible, it suffices to
show that there exists one state that is positive recurrent. We will show s0 is positive
recurrent, i.e. that

m(s0) = ∑
t=1

t ·P(Ts0 = t) < ∞,
∞

where
Ts0 = inf{s ≥ 0 : Xs = s0 | X0 = s0}.

Recall that agent deaths are independent across agents and time (agent interactions
affect k-values, but, for example, the conditional probability that agent i dies conditional
on the death of agent j is just the unconditional probability that agent i dies). Using
Assumption 1 and (3), it is easy to show that the probability of death for a given agent
i at a given time t satisfies

0 < β0 ≤ pd
i,t ≤ β0 + (k∗)2 < 1.

Therefore, the probability that at least one agent survives in a given period satisfies

P(at least one agent survives) = 1−P(all agents die)

≤ 1− βN
0 .

Next, observe that the event that Ts0 = t is a subset of the event in which at least
one agent survives in each of the first t− 1 periods and all agents die in period t. By
the above, we have that

P (Ts0 = t) ≤ P(at least one agent survives in first t− 1 periods)

×P(all agents die at time t)

≤ (1− βN
0 )

t−1(β0 + (k∗)2)

≤ ct,

where c := max{1 N− β0 , β0 + (k∗ 2) } < 1. Therefore,

m(s0) =
∞

∑
t=1

t ·P(Ts0 = t) ≤
∞

∑
t=1

tct,

which converges by the ratio test.
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5 Simulations: Cycles of consensus and dispersed opinions

The analysis of models of opinion dynamics usually appeals to results in the overlap-
ping fields of graph theory, Markov processes, and dynamical systems. The object
of study is the dynamic properties of the opinions updating process (1), particularly
asymptotic convergence results. Static models of DeGroot updating, where the opin-
ions updating process W from equation (1) is constant, are linear dynamical systems
and have been treated at length. Golub and Jackson (2010), for example, produce
a general result establishing a set of mild assumptions that lead to convergence of
opinions in the static DeGroot model.

Analytic or asymptotic results are more difficult to obtain in models such as ours,
where W is time-varying. This is especially true if the opinions of the agents affect the
network structure and, in turn, the network structure affects the opinions of agents.
The feedback between the two creates a nonlinear dynamic. Hegselmann and Krause
(2002, 2005) (see also Lorenz (2005, 2006a,b)) analyze models with time-varying W in
which agents dynamically form links to other agents with similar opinions. These
authors obtain some convergence results but unfortunately their methods do not apply
to our model.

An alternative approach is to analyze the model using Monte Carlo simulations.
Because of the ergodic nature of the model when viewed as a Markov chain (see section
4), Monte Carlo simulations lead to results that are asymptotically valid. Hence we can
be assured that the behavior of the system we observe in the simulation will converge
to its true behavior and will not depend on the particular initial condition used to
begin the simulation.

Table 1: Baseline simulation parameters

Parameter Value

N
k∗

pc

β0

25
0.6

5× 10−3

2× 10−5

From the model description in section 2 we deduce that our model is parameterized√
by the 4-tuple (N, k∗, pc, β0), where N ∈N is the number of agents, k∗ 1∈ [ 2 , 1− β0)

is the state of the world, pc ∈ (0, 1) is the common probability of an agent connecting
to another agent in a given period, and β0 ∈ (0, 1) is the exogenous probability of
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death (see (3)). Table 1 lists the baseline parameter values used for the simulations,
which were arrived at by experimentation. A sensitivity analysis of the parameters
suggests that the qualitative results that we describe are robust to modifications (see
also section 6).5
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Figure 1: Principal types of dynamics in the model.
Time series of network density and median agent age for three runs of the model. The center graph depicts
the model with parameters as in table 1. The models for the top and bottom graphs differ only in β0, with
β = 0 in the top graph and β = 2× 10−3

0 0 in the bottom. Network density (blue), i.e. total connections
divided by N(N − 1), is on the left axis; median |k − k∗| (orange), i.e. median distance from k∗, is on the
right axis.

5The model is written in the Python programming language (Python Software Foundation) using the
NetworkX (Hagberg et al. (2008)) and Pandas (McKinney (2012)) packages. Seed values for runs are
randomly chosen but are stored for potential later use. We establish a “burn-in” period at the beginning
of a run of the model. At the beginning of the burn-in period, all agents have uniformly drawn k-values
and zero connections. The burn-in period ends when all agents have died at least once, after which the
model run is considered to begin and time is reset to t = 0.
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Figure 1 depicts time series of the number of connections among agents and the
median distance (across agents) of opinions from the state of the world for three
parameterizations of the model. The baseline version of the model is the center graph.
The model parameters used in the top and bottom graphs differ only in the exogenous
probability of death, β0. The top graph depicts the model with β0 = 0 and the bottom
graph depicts the model with β0 = 2 3× 10− , so that β0 increases from the top graph
to the bottom graph. Each figure graphs the network density, defined as the total
connections as a proportion of the maximal possible total connections (which is equal
to N(N − 1)), in blue (left axis) and the median value across agents of the distance of
opinions from the state of the world, that is, the median |k− k∗|, in orange (right axis).
The model is run over 500,000 periods. The time axis is common to all three graphs.

Figure 1 reveals the three principal types of dynamics that occur in the model.
Consider the top figure, with zero exogenous probability of death. At most times
during the model run the network density is nearly one, indicating that at these times
the network is nearly fully connected. Moreover, the distance of the median opinion
to the state of the world is very close to zero, suggesting that agents have achieved
consensus and that their opinions are very accurate. With the exception of the first
50,000 periods, the effect of the few deaths that occur is idiosyncratic, as connections
are rebuilt and information sharing quickly resumes.

Contrast the top and bottom graphs in figure 1. In the bottom graph, the exogenous
probability of death is higher (equal to β0 = 2× 10−3), and the resulting model has
a completely different dynamic from the top graph. Network density is uniformly
below 0.1, indicating that at all times the agents are only sparsely connected. Moreover,
the median distance of opinions from the state of the world is highly volatile with an
average of about 0.05. Connections never reach a significant level as the rate of death
due to exogenous reasons overwhelms the link formation process, and thus impedes
information sharing. This then feeds back into an increased probability of agent death.

The dynamics of the baseline model in the center graph of figure 1 are more
interesting. Looking at the time series of the network density and opinions, one ob-
serves pronounced cycles in which periods of high connectivity and relatively accurate
opinions transition quickly into periods of low connectivity and relatively inaccurate
opinions (crashes), eventually transitioning again to a period of high connectivity and
relatively more accurate opinions (rebuilding). These cycles are stochastic in the sense
that they occur irregularly and last for varying amounts of time. Finally, referring
again to the top graph where β0 = 0, note that from the first 50,000 periods in the top
graph that a cycle occurs even in the case when the exogenous probability of death is
zero.
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Figure 2: Detail on dynamics of a typical cycle.
Time series for an 8,000 period cycle are depicted from a simulation of the model under the baseline pa-
rameters of table 1, except that N = 10. The top graph depicts network density. The bottom three graphs
depict attributes for all of the agents, which are represented by the same colors in the graphs. The second
graph depicts agent age, the third graph depicts agent opinions (k-values), and the bottom graph depicts
the distance of opinions from the state of the world (|ki − k∗|). The time axis is common to all graphs.
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Figure 3: Crash: Transition from high to low connectivity.
Snapshots of the graph representations of the network at specified times throughout the cycle depicted
in figure 1. Agents are represented by circular nodes with the same colors as in the bottom three graphs
of figure 1. Connections among agents are represented by edges, with the dark gray end indicating the
direction of information flow. Nodes are labeled with the corresponding agent’s opinion and age.

25



0.852
1

0.582
14

0.565
166

0.565
86

0.565
535

0.570
193

0.565
797

0.712
59

0.565
88

0.957
5

Panel 7: t = 4,355

0.565
214

0.565
543

0.565
695

0.565
437

0.565
1064

0.565
722

0.565
1326

0.565
588

0.565
617

0.565
494

Panel 8: t = 4,884

0.565
215

0.565
544

0.565
696

0.565
438

0.565
1065

0.565
723

0.565
1327

0.600
1

0.565
618

0.565
495

Panel 9: t = 4,885

0.590
426

0.589
755

0.589
907

0.589
649

0.589
1276

0.590
934

0.589
1538

0.600
212

0.590
829

0.590
706

Panel 10: t = 5,096

0.590
885

0.590
1214

0.590
1366

0.590
1108

0.590
1735

0.590
1393

0.590
1997

0.590
671

0.590
1288

0.590
1165

Panel 11: t = 5,555

0.596
2830

0.596
1927

0.596
3311

0.596
3053

0.596
1824

0.596
3338

0.596
3942

0.596
2616

0.596
3233

0.596
3110

Panel 12: t = 7,500

Figure 4: Rebuilding: Transition from low to high connectivity.
Snapshots of the graph representations of the network at specified times throughout the cycle depicted
in figure 1. Agents are represented by circular nodes with the same colors as in the bottom three graphs
of figure 1. Connections among agents are represented by edges, with the dark gray end indicating the
direction of information flow. Nodes are labeled with the corresponding agent’s opinion and age.
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Figures 2, 3 and 4 aid in explaining the cycles. Figure 2 depicts the detailed
dynamics of a cycle from a model run with parameters as in table 1, except that the
number of agents is reduced to N = 10. It contains four time series graphs, where the
time axis is shared among all four. The top graph depicts the network density, which
ranges from zero to one, indicating that the network evolves from totally disconnected
to a complete graph over the course of the cycle. The remaining three graphs depict
the ages, opinions, and distances of opinions from the state of the world, respectively,
for each of the 10 agents. Recall that, in any given period, the age of an agent that has
survived the previous period is incremented by one, whereas an agent that died is
replaced with a new agent with age equal to zero. We depict by the same color the
agent that replaces a dead agent, so that if a blue agent dies then its replacement is also
blue. For the ease of exposition we will call each color a color seat. Thus at any given
time each agent is identified to its color seat, and when an agent dies its replacement
occupies the same seat.

Figures 3 and 4 provide snapshots of the network at selected times during the cycle
depicted in figure 2. The figures are composed of 12 panels ordered in time, where
the specific time depicted is indicated in the panel’s title. In each panel the agents are
represented by circular nodes, with colors corresponding to the colors of the agents
in the lower three graphs of figure 2. The nodes in each panel are labeled with the
corresponding agent’s opinion (rounded to three decimal places) and age at that time,
and the size of the node is proportional to the agent’s opinion. Connections between
agents are represented by the edges of the graph in the panel. The thick end of an edge,
colored in dark gray, indicates the direction of information flow; an edge whose ends
are both thick represent bidirectional information flow (these edges count as two edges
in the graph of network density in figure 2).

The cycle depicted in figures 2, 3 and 4 occurs over 8,000 periods. From time t=0 to
t=741 the network is in a highly connected state, with network density above 0.9, and
agents are in agreement on their opinions, with k-values close to the state of the world
k∗. This is confirmed in panel 1 of figure 3, which shows the graph representation at
time t=741 and from which one observes agents in a highly connected state having
achieved consensus opinions of 0.590, close to the state of the world 0.6. Moreover, the
second graph of figure 2 indicates that at time t=741 agent ages are dispersed, ranging
from 1,701 to 4,121 periods. Subsequently, at time 742, the blue agent, which is the
oldest agent, dies, either because its opinion of 0.590 is not precisely equal to the state
of the world, or as a result of the exogenous probability of death being greater than
zero. Panel 2 of figure 3 shows that the blue agent’s death results in the destruction of
all of its connections and that a new agent in its color seat is born at t=742 with initial
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opinion equal to 0.902. In the graph of ages of figure 2, the blue agent’s death at time
t=742 can be determined by the vertical drop in its age from about 4,121 to zero. Agent
deaths throughout the cycle can be determined in the same way.

Between times t=742 and t=1,015, all agent deaths occur in the blue seat. The agents
replacing dead agents are born into the blue seat with randomly drawn opinions that
are generally different from the other agents and the state of the world. They struggle
to connect and often die. Then at time t=1,016, an agent in the blue seat enters the
system with k-value approximately equal to 0.523, closer to the state of the world
than his recent predecessors in the blue seat, but still different from the other agents.
Partly because of its relatively more accurate initial opinion, this agent survives long
enough for at least some of the other agents to connect to it and obtain information
from it. Importantly, the agent spreads its relatively inaccurate opinions while not
forming in-links and obtaining more accurate information from the rest of the agents.
This occurs (in expectation) because the blue agent connects to another agent with
probability pc in a period, but each of the other agents, having already connected to
each other, have that same probability of connecting. For instance, panel 3 of figure
3 shows that the light green agent has already connected to the just-born blue agent.
Panel 4 of figure 3, 184 periods after panel 3, shows that by time t=1,200 four agents
(orange, light orange, light green, and light purple) have connected to the blue agent,
but the blue agent has no in-links itself and is not receiving information from any
of the other agents. Its generally inaccurate information spreads to the other agents
and, although the blue agent has relatively little weight in each of the other agents’
update rule, the fact that its poor information is accounted for in at least some of the
other agents’ updating and that the other agents all update according to each others’
information means that the blue agent’s poor information has outsize influence as it
spreads nonlinearly to the other agents. As we see from period t=1,016 to t=1,200, the
k−values of all of the other agents deteriorate in accuracy from 0.59 to 0.573, which is
closer to the k-value of the blue agent.

To facilitate understanding of this dynamic, consider the following simplified
example. Assume there are N = n + 1 agents. The first n agents are connected to each
other and the last agent is connected to the second-last agent in a one-way transmission
of information wherein the second-last agent receives information from the last agent
but not vice-versa. The last agent thus does not receive information from any of the
other agents; it represents perhaps a new entrant in the system, such as the blue agent
at time t=742 above. Suppose the first n agents have opinions exactly equal to the state
of the world k∗=0.6 but the last agent has opinion equal to 0.5. For simplicity, assume
the first n− 1 agents equally weight their connections’ opinions, the second-last agent
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places a small weight of ε > 0 on the last agent’s opinions and equally weights the
others’ opinions, and the last agent, the new entrant, only considers his own opinion (cf.
panels 3 and 4 of figure 3). Also assume that there is no link formation or destruction
process. This is an example of a static DeGroot learning model. The weight matrix W
of (1) is constant in time, and is equal to

W =



1
n

1
n · · · 1

n 0
1
n

1
n · · · 1

n 0
· · · · · · · · · · · · · · ·
1−ε

n
1−ε

n · · · 1−ε
n ε

0 0 · · · 0 1

 . (9)

The agents’ opinions t periods in the future are given by the computation

k(t) = Wtk(0) =
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Using known results from Golub and Jackson (2010), we deduce that the agents in
this simple example converge to a consensus opinion equal to the opinion of the last
agent.6 That is, 

0.5  0.5  
lim k(t) = 
t→∞  · · ·  .  0.5 

0.5


(10)

This is perhaps surprising given the isolation of the last agent relative to the rest of the
highly interconnected agents and the arbitrarily small influence that the last agent’s
opinion has on merely one of the other agents. Moreover, the exponential rate at which
information diffuses among the first n highly interconnected agents, relative to the
small probability that the last agent connects into the highly interconnected group,
implies that the above example, while simplified, nonetheless captures an essential
point about our model that a single agent with an inaccurate opinion can “infect” the
opinions of all the other agents, even if only one other agent is directly connected to it.

6Using the terminology in Golub and Jackson (2010), it is easily seen that the singleton set containing
the last agent is the only so-called closed group, and thus the only minimal closed group, relative to W
in (9). Then (10) follows from Theorem 3 therein.
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The blue agent’s infection of the other agents sets the stage for the crash, the
disorderly transition from a state of high connectivity and accurate consensus to a state
of low connectivity and widely dispersed opinions. Five agents die, including three of
the oldest, between t=1,200 and t=1,564 partly because of their less accurate opinions
due to the influence of the blue agent. Their replacements, with randomly drawn
beliefs, have generally poor information and either die as they struggle to connect, or
stay in the system long enough to spread their poor information. The bottom graph in
figure 2 indicates that opinions continue to get farther from the state of the world over
the period from about t=1,600 to t=2,100, precipitating the deaths of the remaining
old agents and leading eventually to almost a complete collapse of the links in the
network.

The ensuing period between times t=2,100 and t=4,500 is one of low connectivity
and high dispersion in opinions. For example, panel 6 in figure 3 shows that at
time t=2,600 most of the agents are young and have inaccurate opinions, and that
there is only one connection among agents at that time. During the low-connectivity
state, agent deaths are common since they are unable to obtain a sufficient number
of connections to improve their opinions. There are a few periods when opinion
volatility settles and connections rebuild somewhat so that it seems that the system
might transition back to a high connectivity state, but this proves temporary and the
system reverts to the low-connectivity state. Finally, around t=4,400, half of the agents
in the system die in close succession and are replaced eventually with agents whose
opinions are close enough to the state of the world to remain in the system long enough
to connect and obtain more accurate opinions. The network begins to rebuild as density
goes from about 0.1 to 0.3 between t=4,500 and t=4,800, its highest value since the
crash. Panel 8 in figure 4 shows that by time t=4,884 agents are moderately connected
and have achieved a consensus opinion around 0.565, a distance of 0.035 away from
the state of the world. Then, as panel 9 shows, at time t=4,885, the pink agent dies and
is replaced with an agent whose initial opinion is equal to 0.60029, which is very close
to the state of the world. Since its opinion is so close to the state of the world, the pink
agent remains in the system long enough to spread its accurate opinions. There are no
deaths in the period between t=4,885 and t=5,096 and panels 9 and 10 in figure 4 show
that the three out-links to which the pink agent is a party have resulted in the spread
of its accurate information to all of the rest of the agents, as their consensus opinion
has improved from 0.565 to 0.589. Thereafter, agents are in agreement about opinions
and these opinions are close to the state of the world. A few idiosyncratic deaths occur
as connections increase until the network is fully connected around t=8,000, at which
time the agents are in consensus and have opinions that are close to the state of the
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world (see panels 11 and 12 in figure 4).
To summarize, certain parameterizations produce cyclic dynamics. Cycle frequency

depends on the relationship between the probability of connection and the exogenous
probability of death (we elaborate on this in section 6). In the high-connectivity state
agents are very interconnected and generally have accurate opinions. But because
of either the positive exogenous probability of death or slight inaccuracies in their
opinions, eventually some agents will die. If a relatively old and interconnected agent
with accurate opinions dies, then its failure removes its information from all of its out-
links. It is replaced by an agent with generally inaccurate opinions. But if this agent’s
opinions are sufficiently accurate such that it remains in the system long enough for
other agents to connect to it, then it can infect the other agents with its poor information.
Despite its possibly low weight in other agents’ updating functions, this infection can
spread nonlinearly because the agents are interconnected and repeatedly update their
opinions. As a result, most or all of the agents’ opinions can deteriorate, which can
lead to more deaths and the destruction of connections. If the subsequent replacement
agents have poor information but are able to connect and spread it to others, then
this can lead to a further deterioration in information and to more deaths. Eventually,
most connections are severed and agents enter a low-connectivity state in which their
opinions are dispersed. Deaths occur frequently in this state. Eventually, agents
with sufficiently accurate information survive long enough to share their information
with others. Their good information can spread to the other agents in the same way
that bad information spread before. Agents with good information live longer and
longer, connecting more and more often. Eventually the system enters a period of high
connectivity and achieves a consensus at accurate opinions.

6 Comparative statics

Next we present comparative statics on the model’s two main sources of randomness,
the per-period probability of connection pc and common exogenous probability of
death β0 in (3). These model parameters represent the speeds of information trans-
mission and destruction, respectively. A higher probability of per-period connection
pc produces a faster rate of information transmission, as agents are able to make con-
nections more often and transmit information over these connections. Conversely, a
higher β0 represents a higher rate of death from exogenous reasons, and thereby a
higher rate of information destruction. By examining properties of the model as these
parameters vary, we are able to illuminate this trade-off and determine which sets of
parameters produce more stability and which produce more fragility.
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Figure 5: Comparative statics: Crash frequency.
Heat map showing how crash frequency varies as probability of connection (pc) and exogenous probability
of death (β0) vary. Each (pc, β0)-pair is given by the values along the axes and all other model parameters
are as in table 1. Each set of parameters is simulated over 25,000,000 periods.

Figure 5 is a heat map that illustrates the relationship between pc and β0 with
respect to the frequency of crashes. For each (pc, β0)-pair indicated along the axes, the
model is run over a period of 25,000,000 periods, with all other parameters as in Table
1. Crash frequency is determined as follows. A crash is composed of a transition from
a high-connectivity state in which agents have reached an accurate consensus opinion
close to the state of the world to a low-connectivity state in which agents’ opinions are
widely dispersed. A crash is eventually followed by a rebuilding period, which is a
transition back to the high-connectivity state. We observe from figures 1 and 2 that
network density closely tracks periods of consensus and dispersion of opinions. We
will use network density to define the states and compute the crashes because other
natural measures of crash count, such as using variance of opinions, tend to be noisier
than network density. We consider the system to be in a high-connectivity state when
the network density is greater than 0.6, and to be in a low-connectivity state when the
network density is less than 0.4. The system is considered to be in an intermediate state
when network density is between 0.4 and 0.6.7 Thus a crash has occurred if network
density goes from above 0.6 to below 0.4. For example, applying this definition to the
graphs of network density in figure 1, we count one crash in the top graph, six in the

7Other cutoff values for state classification produce similar results.
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center graph, and zero in the bottom graph.
We see in figure 5 that for a fixed probability of connection pc, a higher β0 generally

leads to more crashes. For a fixed β0, a lower probability of connection results in more
crashes. The greatest number of crashes occurs when the probability of connection is
low and the exogenous probability of death β0 high, and the least number of crashes
occurs when connection probability is high and exogenous probability of death is low.
Moreover, the level curves for crash frequency appear to be approximately linear in
pc and β0. Intuitively, as β0 rises, the relative value of being close to the state of the
world k∗ declines. Agents die more arbitrarily, and fail to establish and maintain many
centralized connections. This results in a more complete network, with more frequent
crashes. However, as β0 goes to zero, agents that are lucky enough have opinions k
close to k∗ and become more central because they do not arbitrarily die and agents
connecting to them maintain their connections. This is reinforced if pc is high, and
leads to a system with many connections to central nodes. Such a system experiences
fewer crashes because central nodes with high-quality information are unlikely to
die; however, when a central node dies, the effects of its death propagate to its many
connections, leading to a crash.

7 Tribal preference and network stability

A widespread finding in the sociology and social networks literature is that agents
associate more with other agents that are similar to them and less with those that
are not. This tendency of agents to disproportionately link to similar agents is called
homophily. Homophily has been observed across many agent characteristics, including
age, gender, race, education level, profession, and political affiliation (see McPherson
et al. (2001) for a review). It is natural to consider homophily in our context. In
the application of the model to leverage (see section 3), for example, agents can be
partitioned into dealer banks and non-dealer entities. Dealer banks are accustomed to
doing high volumes of business with each other relative to other financial institutions
and thus might be more likely to associate with each other as opposed to non-dealers.

Since homophily affects the propensity of agents to connect to other agents, it has
a direct effect on the link-formation process and on the flow of information in the
network. This effect on information flow was analyzed by Golub and Jackson (2012). In
a model incorporating homophily they find that, for average-based updating processes
such as the DeGroot updating method, the time to converge to consensus is increasing
and convex in homophily, holding other factors fixed. A natural question in our context
is how homophily affects the frequency of crashes.
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We analyze the effect of homophily on network stability in a simple extension of
our model in which we introduce the notions of a tribe and tribal preference. The tribe
is a pre-specified subset of the agents of size T ≤ N in which the agents are alike in
some way that affects their propensity to connect with one another rather than to the
general populace. In the application of the model to leverage, the tribe could be a set
of dealers, as discussed above.

For members of the tribe, the selection of an agent with whom to connect is made
according to the tribal preference parameter ptp ∈ (0, 1). Conditional on connecting
in a given period, the tribal preference parameter ptp is defined to be the probability
of connecting to a member of the tribe; if an agent is already connected to all other
members of the tribe, then it connects randomly to an available agent from the broader
population. For simplicity, we assume that tribal preference is the same for all members
of the tribe, and that the tribe and tribal preference parameters are fixed at initial
time and are not time-varying. In our example, dealers need not transact or learn
information from other dealers only. Tribal preference quantifies how willing they are
to rely on non-dealers’ information.

As the tribal preference parameter ptr increases, agents increasingly prefer to con-
nect to agents who are within their own tribe rather than connect to random agents
from the greater population. By restricting the set of possible agents with whom to
connect, they are willfully ignoring information because they are less confident of the
reliability of information outside their tribe. They are more discriminatory in their con-
nections, and less trusting of outsiders. Conversely, as the tribal preference parameter
ptr decreases, agents increasingly prefer to connect to random agents not necessarily
within their tribe, expressing a willingness to obtain information from a broad-based
supply of agents. Agents are more trusting of other agents, as they are more confident
of the quality of information available broadly, and a more global system arises.

Note that the proof of theorem 4.1 goes through for all ptp ∈ [0, 1) and thus the
model with tribal preference is ergodic. We simulate the model for various tribe and
population sizes, with other parameters as in table 1. Figures 6 and 7 are representative
of the resulting behavior. Figure 6 shows that the connectivity of the system depends
on how strongly agents prefer to connect to agents of their type. The figure depicts
the empirical frequency distributions of total connections for various levels of tribal
preference ranging from zero to one, as indicated in the graph’s legend. The tribe size
is T = 25, the population size is N = 100, and the model is simulated over 10,000,000
periods. At low levels of tribal preference, there are fewer interconnections among
tribe members, as the tribe connects about as willingly to the greater population of
agents. As tribal preference increases, mass moves from low numbers of within-tribe
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Figure 6: Density of within-tribe connections.
Depiction of the frequency distributions of total within-tribe connections for various levels of tribal prefer-
ence indicated in the graph legend. The tribe size is 25 and the population size is 100. All other parameters
of the model are as in table 1. Graph is based on model runs of 10,000,000 periods. The data are smoothed
using a Savitzky-Golay low-pass filter (see Savitzky and Golay (1964)).
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connections to high numbers of within-tribe connections. This result confirms that the
tribal preference parameter governs the interconnections among tribe members.
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Figure 7: Within-tribe crash count as tribal preference varies.
Depiction of the crash frequency as tribal preference varies in [0, 1]. The tribe size is 12 and the population
size is 48. All other parameters of the model are as in table 1. Results are based on model runs of 25,000,000
periods. The dotted line depicts the raw data while the continuous line depicts the raw data fitted by a
cubic polynomial.

We next consider the relationship between tribal preference and stability of the
system. We summarize this relationship in terms of the frequency of crashes. Figure 7
shows how the dynamics within the tribe are affected by the tribal preference parameter.
The tribe size is T = 12, the population size is N = 48, and the model is run over
25,000,000 periods. The figure depicts, for varying levels of tribal preference ranging
from zero to one, the number of crashes that occur in the model simulation. A crash
is composed of a transition from a period of high connectivity and consensus among
agents to a period of low connectivity and dispersed opinions. As in section 6, this is
operationalized using network density cutoffs of 0.6 and 0.4. Finally, the solid blue is
determined by fitting a cubic polynomial to the raw data.

Figure 7 shows that tribal preference determines crash frequency. As tribal pref-
erence increases, i.e. agents become less trusting of outsiders, the number of crashes
decreases from about 250 to 150. For low levels of tribal preference, all agents in the
tribe are connecting indiscriminately among the larger population. The agents are thus
exposed, directly and indirectly, to a greater number of agents. The more agents there
are, the higher the chance that at least one agent dies (either for exogenous reasons or
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because of imperfect opinions). As discussed in section 5, if a dead agent is replaced
by a new agent with poor information relative to the other agents but good enough
information in an absolute sense to survive and connect, then in a highly connected
state this relatively poor information can propagate widely, reducing the accuracy of
others’ information, and leading to more deaths and eventually a crash. Conversely,
for high levels of tribal preference all agents within the tribe are mainly connecting
to themselves. As the tribe is a proper subset of the general population, this leads
to fewer chances for a dead agent’s replacement to infect the tribe and cause a crash.
Therefore, over periods of the same length, lower tribal preference leads to a greater
number of crashes.

8 Conclusion

We develop a social networks model that combines elements of DeGroot learning
and dynamic network formation in which continued membership in the network
is contingent on the accuracy of opinions. In contrast to results in the literature on
DeGroot learning, we find through simulations that the model cycles between a state
of high connectivity and consensus and a state of low connectivity and dispersed
opinions. Transitioning from a state of high to low connectivity occurs when a highly
connected agent dies and is replaced by an unconnected agent with relatively poor
quality information, which then spreads through the highly interconnected network,
leading to less accurate opinions and to more deaths. The transition from a low to high
state of connectivity occurs when agents with accurate opinions stay alive long enough
to spread their information as connections form. A comparative statics analysis on
the parameters governing the cycles suggests that level curves of crash frequency are
approximately linear in the probability of connection and the exogenous probability
of death. In an extension of the model that incorporates homophily, we find that the
frequency of crashes is decreasing in the degree of homophily.

The model shows that interesting macroscopic phenomena can emerge as the
result of simple behavioral rules at the agent level. The complexity resulting from the
nonlinear, state-dependent dynamics makes the model largely intractable, though it is
still ergodic.
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