Contributions to Financial Stability
Measuring and Forecasting Financial Stress

SAFE: An early warning system for systemic banking risk

2013 Financial Stability Conference
Financial Stability Analysis: Using the Tools, Finding the Data
May 30, 2013

Mikhail Oet
Economist, Federal Reserve Bank of Cleveland
Timothy Bianco
Economic Analyst, Federal Reserve Bank of Cleveland
Dieter Gramlich
Professor of Banking, Baden-Wuerttemberg Cooperative State University
Stephen Ong
Vice President, Policy, Risk & Analytics, Federal Reserve Bank of Cleveland

The content of this presentation represents the views of the individual authors and is not to be considered as the views of the Federal Reserve Bank of Cleveland or the Federal Reserve System
Agenda

1. **Early warning of systemic stress**
 - Measure of systemic conditions
 - Identifying systemic stress
 - Set of factors to explain this measure
 - Forecasting systemic stress

2. **Data**
 - Confidential supervisory data adds value to public data

3. **Uses in supervisory process**
 - Across time
 - Identification of stress
 - Monitoring of stress
 - Alerting of stress
 - Across institutions
 - Contributions to stress
 - Adverse exposures
 - Macroprudential vs. microprudential issues
Introduction

• Systemic risk leading to financial crisis
 • Economic imbalances
 • Shock
 • Adverse feedback loop
 • No self-correcting mechanism
 • Financial market fails to function normally
 • Spillover to the real economy

Group of Ten, 2001, BIS

• Develop an early-warning system for systemic risk identification that provides supervisors time to prevent or mitigate a potential financial crisis
Conceptual model

- Explanatory factors in literature (See Table 1)
- Feedback (Krishnamurthy, 2009)

- Explanatory factors (This paper)
- Institutional imbalances (This paper)
- Liquidity feedback (This paper)

Liquidity transformation imbalances
Risk transformation imbalances
Return transformation imbalances
Structural imbalances

FINANCIAL STRESS
—positive
—negative
Observations

- Accumulated imbalances above long term means are highly correlated to stress episodes across time.

- Structurally, financial system is highly heterogeneous by exposure concentrations across institutions.
CFSI — measure of US financial stress

Available daily from http://www.clevelandfed.org/research/data/financial_stress_index/
Early warning

CFSI — measure of US financial stress

Components of the CFSI - Summary

This chart shows the contribution of four financial sectors to the Cleveland Financial Stress Index (CFSI). The CFSI is a coincident indicator of systemic stress, where a high value of CFSI indicates high stress in the financial system. A value of 0 indicates the least possible stress, and a value of 100 indicates the most possible stress.

Early warning

US Financial stress indexes in 2008... and in 2010

Sources: Oet, Bianco, Gramlich, and Ong (2012); Federal Reserve Bank of St. Louis

Sources: Oet, Bianco, Gramlich, and Ong (2012); Federal Reserve Bank of Kansas City

Sources: Oet, Bianco, Gramlich, and Ong (2012); Federal Reserve Bank of Chicago

Sources: Oet, Bianco, Gramlich, and Ong (2012); Bloomberg

Sources: Oet, Bianco, Gramlich, and Ong (2012); Bloomberg

Sources: Oet, Bianco, Gramlich, and Ong (2012); Hatzius, Hooper, Mishkin, Schoenholtz, and Watson (2010)

Note: Values are quarterly averages.
CFSI comparison with alternative indexes - quarterly

Source: Federal Reserve Bank of Cleveland; Federal Reserve Bank of Chicago; Federal Reserve Bank of Kansas City; Federal Reserve Bank of St. Louis
Development of dependent variable series

- Quarterly financial stress series (CFSIqt)
 - what is the precedent set by the indicator’s value
 - how much that precedent matters

- Mathematically:

\[Y_t = CFSIqt = \sum_j \left[w_{jt} \ast \int_{-\infty}^{z_{jt}} f(z_{jt}) \, dz_{jt} \right] \ast 100 \]

 - where the Zjt term is the value of indicator j at time t,
 - the integration term is the CDF of indicator j,
 - the Wjt term is the weight given to indicator j in the FSI at time t.

- A key technical challenge is the potential for false alarms
 - Overcome by appropriate choice of the weighting methodology
Imbalances

- Methodology uses Z-scores to express imbalances
 - Imbalance X_t is defined as deviation of explanatory variable X_t from its mean
 - X_t is constructed as standardized imbalance of X_t

$$X_t = \frac{X_t - \mu^x_t}{\sigma^x_t}$$

- where X_t is a deflated explanatory variable
- μ^x_t is cumulative mean of the explanatory indicator known as of time t, and σ^x_t is its cumulative standard deviation

- The X_t imbalance shows potential for stress
Early warning

Model

- Each SAFE model is an optimal lag linear regression model

\[Y_t = \beta_0 + \beta_{RET}X_{RET,t-n_{RSK}} + \beta_{RSK}X_{RSK,t-n_{RSK}} \]
\[+ \beta_{LIQ}X_{LIQ,t-n_{LIQ}} + \beta_{STR}X_{STR,t-n_{STR}} + u_t \]

where the dependent variable \(Y_t \) is constructed separately as a series of systemic stress in the U.S. financial markets, and the independent variables \(X_{i,\text{lagged}t} \) are return, risk, liquidity, and structural characteristics of the asset class exposures of the top twenty-five US BHCs.
Design

• A hazard inherent for all ex ante models is that the model uncertainty may lead to wrong policy choices

• To mitigate this risk, SAFE develops two perspectives
 - medium term advanced warning specifications, suitable for ex ante policy action
 • long-lag models: lags 6-12
 - short term model specifications for verification and adjustment of supervisory actions
 • short-lag models: lags 2-12

• Model Checks and Balances
 - LL models provide a minimum of 6 quarters warning
 - SL models provide a minimum of 2 quarters warning
Benchmark model

- Expect stress to be related to past stress

\[\hat{FSI} = 7.85 + 0.60FSI_{-1} + 0.24FSI_{-4} \]
Simple candidate base model

RETURN
- Equity +

RISK
- Credit Risk Capital –

LIQUIDITY
- AL Mismatch +

STRUCTURE
- Leverage +
Early warning

From simple to complex: short- and long-lag

Form Benchmark Model
\[
FSI = 7.85 + 0.60FSL_{-1} + 0.24FSL_{-4}
\]

Form Candidate Base Model
\[
FSI = 36.58 + 0.35FSL_{-1} + 1.70GT_AL3_{-5} + 7.04GT_LEVN_{-5} + 2.34\Delta PMKTCP_{-5} - 12.62\Delta CRCAP_NV_{-11}
\]

Form Short-Lag Benchmark Model
\[
FSI = 38.77 + 0.40FSL_{-1} + 2.06\Delta HFX4_{-6} + 8.65\Delta EQ5_{-8} + 8.15GT_LEVN_{-5} - 2.94\Delta EQLGDW3_{-7} - 4.55CR_EVS_V_{-8}
\]

Form Long-Lag Benchmark Model
\[
FSI = 37.85 - 9.88GT_ALG3_{-9} + 2.29EDF_{-11} - 2.24CR_EVNV_{-6} + 4.55GT_HIB_{-8} + 11.20GT_LEVN_{-7}
\]
Results: short-lag and long-lag

Short-lag models

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
<th>(7)</th>
<th>(8)</th>
</tr>
</thead>
<tbody>
<tr>
<td>OBSERVATIONS</td>
<td>61</td>
<td>61</td>
<td>61</td>
<td>61</td>
<td>61</td>
<td>61</td>
<td>61</td>
<td>61</td>
</tr>
<tr>
<td>R-SQUARED</td>
<td>0.733</td>
<td>0.824</td>
<td>0.817</td>
<td>0.803</td>
<td>0.784</td>
<td>0.783</td>
<td>0.774</td>
<td>0.780</td>
</tr>
</tbody>
</table>

Combination

- **In-sample**

- **Out-of-sample**

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
<th>(7)</th>
<th>(8)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAPE</td>
<td>18.68</td>
<td>26.36</td>
<td>16.87</td>
<td>21.96</td>
<td>19.17</td>
<td>27.37</td>
<td>18.82</td>
<td>21.09</td>
</tr>
<tr>
<td>Theil U</td>
<td>0.150</td>
<td>0.231</td>
<td>0.138</td>
<td>0.178</td>
<td>0.173</td>
<td>0.246</td>
<td>0.117</td>
<td>0.185</td>
</tr>
</tbody>
</table>

Combination

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
<th>(7)</th>
<th>(8)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RMSE</td>
<td>27.99</td>
<td>30.36</td>
<td>23.04</td>
<td>24.68</td>
<td>28.47</td>
<td>27.21</td>
<td>29.28</td>
<td>30.20</td>
</tr>
<tr>
<td>MAPE</td>
<td>29.89</td>
<td>33.57</td>
<td>25.20</td>
<td>24.88</td>
<td>29.94</td>
<td>29.35</td>
<td>31.91</td>
<td>33.08</td>
</tr>
<tr>
<td>Theil U</td>
<td>0.231</td>
<td>0.256</td>
<td>0.178</td>
<td>0.197</td>
<td>0.235</td>
<td>0.223</td>
<td>0.244</td>
<td>0.254</td>
</tr>
</tbody>
</table>

Combination

- **In-sample**

- **Out-of-sample**

Long-lag models
Forecast combinations

- Employ regression to resolve relative importance of each model
- Clarify significance of variables out-of-sample

- Short-lag forecast combination

\[CFSI_t = w_1 SL1_t + w_2 SL2_t + w_3 SL3_t + w_4 SL4_t + w_5 SL5_t + w_6 SL6_t \\
+ w_7 SL7_t + (1 - w_1 - w_2 - w_3 - w_4 - w_5 - w_6 - w_7) SL8_t + \varepsilon_t \]

- Long-lag forecast combination

\[CFSI_t = w_1 LL1_t + w_2 LL2_t + w_3 LL3_t + w_4 LL4_t + w_5 LL5_t + w_6 LL6_t \\
+ w_7 LL7_t + (1 - w_1 - w_2 - w_3 - w_4 - w_5 - w_6 - w_7) LL8_t + \varepsilon_t \]
How accurate were SAFE forecasts in real time?

- Actual CFSI
- Long Lag Forecast
- Short Lag Forecast
Early warning

Data

Short-lag stress drivers — 2Q: 2007

<table>
<thead>
<tr>
<th>Units of CFSI</th>
</tr>
</thead>
<tbody>
<tr>
<td>-6</td>
</tr>
</tbody>
</table>

Uses

- A-L Gap (3 to 12 mos.)
- A-L Gap (> 3 mos.)
- Currency Markets - Interbank Exposure
- Securitization
- IRR Indicator
- Credit Risk
- Bank Capital-at-Risk
- Delta CoVaR at 5%
- Capital Market concentration
- FX Concentration
- FX Concentration
- Interbank Concentration
- Risk Transfer Concentration

FEDERAL RESERVE BANK OF CLEVELAND
Long-lag stress drivers — 2Q: 2007

Units of CFSI

AL Gap Indicator - '0 to 3 months' maturity band
AL Gap Indicator - '3 to 12 months' maturity band
Liquidity Index Indicator - immediate fire sale
Capital Markets - Equity
Capital Markets - Bonds
Capital Markets - commercial property
Interbank Exposures
Interbank Exposures
Securitization
Economic Value: 12 call report loan portfolios
CoVaR at 5%
FX concentration
Interbank concentration
Leverage
Explanatory data sources

- Explanatory Data - 86 quarterly data panels from March 1991 to March 2013, top Tier top 100 BHCs, aggregated top 25 BHCs, specified using 62 in-sample quarters

<table>
<thead>
<tr>
<th>Return Imbalances</th>
<th>Liquidity Imbalances</th>
<th>Risk Imbalances</th>
<th>Structure Imbalances</th>
</tr>
</thead>
<tbody>
<tr>
<td>- CRSP</td>
<td>- Moody’s</td>
<td>- Moody’s</td>
<td>- CRSP</td>
</tr>
<tr>
<td>- S&P Case-Schiller data</td>
<td>- FRS – FDR micro data</td>
<td>- FRS – FDR micro data</td>
<td>- FRS - CoVaR model</td>
</tr>
<tr>
<td>- MIT CRE data</td>
<td>- Moody’s</td>
<td>- Moody’s</td>
<td>- FRS - Flow of Funds</td>
</tr>
<tr>
<td>† FRS – X-Country data</td>
<td>†† FRS – IRR FOCUS</td>
<td>†† FRS – IRR FOCUS</td>
<td>† FRS – X-Country data</td>
</tr>
<tr>
<td>†† FRS – BankCaR</td>
<td>†† FRS – IRR FOCUS</td>
<td>†† FRS – BankCaR</td>
<td></td>
</tr>
<tr>
<td>†† FRS – SABR/SEER</td>
<td>†† FRS – IRR FOCUS</td>
<td>†† FRS – CAMELS</td>
<td></td>
</tr>
<tr>
<td>†† FRBC – SCAP-haircut</td>
<td>†† FRS – SABR/SEER</td>
<td>†† FRBC – CAMELS</td>
<td></td>
</tr>
<tr>
<td>†† FRBC – LFM</td>
<td>†† FRBC – SCAP-haircut</td>
<td>†† FRBC – LFM</td>
<td></td>
</tr>
</tbody>
</table>

Clear row indicates public data.
Shaded row indicates supervisory data.
† - Confidential supervisory data (category 1).
†† - Constructed supervisory data (category 2).
Confidential supervisory and public data

- There are three broad categories of explanatory data.
 - Institution-specific data internal to the Federal Reserve System
 - Undisclosed Federal Reserve models and their output
 - These models may use either publicly available data or FRS data
 - Data from the public domain
 - These include raw data from the public domain as well as output from publicly available models that utilizes data from the public domain.
- Our approach defines confidential supervisory data as FRS internal data and the undisclosed output of FRS models.

<table>
<thead>
<tr>
<th>Measures</th>
<th>FRS Series</th>
<th>Proportion FRS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>33</td>
<td>50.0%</td>
</tr>
<tr>
<td>RET Measures</td>
<td>1</td>
<td>10.0%</td>
</tr>
<tr>
<td>RSK Measures</td>
<td>28</td>
<td>82.4%</td>
</tr>
<tr>
<td>LIQ Measures</td>
<td>3</td>
<td>42.9%</td>
</tr>
<tr>
<td>STR Measures</td>
<td>1</td>
<td>7.1%</td>
</tr>
</tbody>
</table>
Does confidential supervisory data add value?

• To test, we remove all FRS variables from the model suggestion stage and re-specify the optimal model.
 - Many of the public series from our original model are preserved
 - Risk series are most depleted by loss of confidential data

• Summary of Findings
 • FRS models fit the in-sample period more tightly
 • FRS models provides a more accurate forecast by all observed metrics

• Conclusions
 • Both model sets catch the increase in stress during 2Q 2007. Confidential models do better in explaining the ongoing crisis. Public models miss the subprime episode all together.
 • This demonstrates the importance and usefulness of confidential data in the creation of an Early Warning System.
Using the tools: the challenges

OBJECTIVES
- T| Time dimension of policy objectives
- X| Cross-sectional dimension of policy objectives

FUNCTIONS
- Identification of systemic conditions
- Forward-looking
- Forecasting
- Identification of systemic imbalances
- Distinguish excessive exposures
- Sensitivity to systemic risk posed

EVALUATION
- Expected loss calculations
- Model uncertainty aversion
- Local robustness analysis
- Robustness with multiple models

FORMS
- Early warning systems
- Asset price models
- Stress testing
- Microprudential feeds
Uses in supervisory process

- Uses across time
 - Forecast thresholds
 - Stress alerts
 - Migration matrices

- Uses across institutions
 - Stress contributions
 - Targets and limits
 - Tiered parity
 - Macroprudential / microprudential issues
Time dimension

Policymakers’ decision is assisted by establishing

- stress thresholds and
- decision rules

- When forecast of stress exceeds the target level of stress, the policymakers can weigh the economic costs of regulatory action against economic costs of a shock
- When forecasts of stress fall short of target action level, EWS supports markets’ ability to self-resolve the particular level of stress
Forecast thresholds across time

LTCM →
Dot-Com Crisis →
Early 2000s Recession →
Lehman Brothers Failure →
Bear Stearns Collapse →
Stock Market Downturn →

Grade 4
Grade 3
Grade 2
Grade 1

Source: Federal Reserve Bank of Cleveland.
Stress alerts across time

Source: Oet, Bianco, Gramlich, and Ong (2012).
Migration matrices across time

- Leverage change (std) needed for stress migration

<table>
<thead>
<tr>
<th></th>
<th>Grade 1</th>
<th>Grade 2</th>
<th>Grade 3</th>
<th>Grade 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grade 1</td>
<td>0</td>
<td>2.3</td>
<td>5.1</td>
<td>7.4</td>
</tr>
<tr>
<td>Grade 2</td>
<td>(2.3)</td>
<td>0</td>
<td>2.3</td>
<td>4.6</td>
</tr>
<tr>
<td>Grade 3</td>
<td>(5.1)</td>
<td>(2.3)</td>
<td>0</td>
<td>2.3</td>
</tr>
<tr>
<td>Grade 4</td>
<td>(7.4)</td>
<td>(4.6)</td>
<td>(2.3)</td>
<td>0</td>
</tr>
</tbody>
</table>
Stress contributions across top 5 institutions
Stress contributions across top 25 institutions
Potential targets and limits across institutions

- Loan portfolio (cpi)
- Interbank currency (cpi)
- Securitizations (cpi)
- Securitizations (ta)
- IR derivatives
- Liq index 1 yr fwd
- Liq index 3 mo fwd
- Liq index fire sale
- Solvency through the cycle
- Solvency in stress
- EDF
- IR distance to crisis
- CR distance to crisis
- Solvency distance to crisis
- FX mark concentration
- Interbank concentration
- Leverage

TARGET

LIMIT

1Q ahead
2Q ahead
3Q ahead
4Q ahead
5Q ahead
6Q ahead

FEDERAL RESERVE BANK OF CLEVELAND
Tiered parity supervision across institutions

LISCC add 1.30 units to stress

LBO add 0.31 units to stress

FEDERAL RESERVE BANK OF CLEVELAND
Macroprudential and microprudential issues across institutions

Macroprudential
Concentration - Currency Market (interbank)

Microprudential
Credit Risk - normal distance-to-systemic stress
Conclusion: SAFE Early Warning System

- Three main contributions
 - significant association between institutional imbalances, system structure, and financial market stress
 - evidence of value of confidential supervisory data from comparisons of public and confidential SAFE models
 - supervisory uses in two dimensions
 - across time: improved identification of emerging systemic stress
 - across institutions: improved identification of adverse common exposures

- SAFE substantiates macroprudential policy choices to supplement the fundamental institution-specific microprudential practices
Discussion

• Q&A

Thank you for your attention

- Mikhail Oet, Federal Reserve Bank of Cleveland. mikhail.v.oet@frb.clev.org
- Timothy Bianco, Federal Reserve Bank of Cleveland. timothy.bianco@frb.clev.org
- Dieter Gramlich, Cooperative State University Heidenheim. gramlich@dhw-heidenheim.de
- Stephen Ong, Federal Reserve Bank of Cleveland. stephen.j.ong@frb.clev.org