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Abstract 

We present a network model approach to studying systemic risk for the Credit Default Swap 

(CDS) market. The network model of the CDS market shows how certain parameters of a 

network can affect the expected loss of the system relative to the initial loss caused by a default. 

This model also demonstrates how a clearinghouse stymies loss propagation and highlights the 

usefulness of important data such as counterparty exposures that are not publicly available.   
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INTRODUCTION 

 

The 2007 Financial Crisis illustrated the severity of losses resulting from systemic risk.  Top 

European and U.S. banks lost over $1.3 trillion on toxic assets and bad loans from 2007-2010.
2
  

Bank bailouts cost the U.S. government in excess of $200 billion.
3
  With the bailouts being 

financed by the tax-paying public, the Dodd-Frank Wall Street Reform and Consumer Protection 

Act was passed in 2010 to address consumer protection, executive pay, and bank capital 

requirements.  The act also expanded regulation on the shadow banking system and financial 

derivatives and enhanced authority of the Federal Reserve to safely wind-down systemically 

important institutions.  As part of the Act, The Financial Stability Oversight Council and the 

Office of Financial Research were created.
4
  Since its creation, the new Financial Stability 

Oversight Council has been charged with identifying and regulating threats to financial stability 

with systemic risk being the key focus.   

Systemic risk is the risk that the failure of one significant financial institution can cause or 

significantly contribute to the failure of other significant financial institutions as a result of their 

linkages to each other.
5
  Systemic risk can also be defined to include the possibility that one 

exogenous shock may simultaneously cause or contribute to the failure of multiple significant 

financial institutions in an economy. 

Systemic failure can arise from four different sources: direct bilateral interbank exposures, 

common asset exposure among banks, net settlement systems for large payments, and imitative 

runs fueled by information contagion.
6
  Direct bilateral exposures between institutions represent 

one of the most common sources of systemic risk.  Failures can occur when one bank holds 

deposits from several other banks, and the failure in the first bank results in either distress or 

failure that spreads to other firms that are connected to the distressed institution.  Similarly, 

                                                           
2
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systemic failure can occur from the counterparty exposure risk in derivative transactions.  The 

most common and recognized of these activities are credit default swaps (CDS).  Systemic risk 

arises from CDS when one institution fails to settle its derivative position with another institution 

– the end result being that both institutions fail.  If the second institution fails to settle its 

obligations with its other counterparties, the contagion
7
 of failures continues through the exposed 

institutions until only institutions with adequate capital remain or the system itself fails.   

The severity of direct bilateral exposure failure is dependent on the degree of interconnectivity 

among the financial institutions involved in the derivative transactions.  The lack of existing 

information on the degree of connectedness among the institutions remains a concern to the 

Financial Stability Oversight Council and other governmental regulatory bodies. 

This paper proposes a network model to identify and measure the systemic risk in a financial 

system which may have a high degree of interconnectedness and whose failures may result in 

further distress or breakdowns in the system.  Networks are particularly useful for modeling risk 

in a financial system due to their handling of contagion, resulting in either losses propagating 

through a financial system in crisis or the absorption of shocks in a resilient, well capitalized 

financial system.  Network models have been applied in other areas, notably in communications, 

transportation, and electric power distribution.  In each of these areas, some item flows from 

point to point through a network that involves connections between points.  In the financial 

system there is interest in the flow of cash and credit between financial institutions.  As shown in 

Bisias, Flood, Lo and Valavanis (2012), Chan-Lau, Espinosa, Giesecke and Sole (2009), and 

Bisais et al (2012), with a matrix of inter-institution exposures, a network approach can track the 

reverberation of a credit event throughout the system, which can help to measure which financial 

institution is a “hot spot”.
8
  

While networks have been used to model systemic risk in financial institutions since 2003, only 

modest research exists for systemic risk in the insurance industry.  A study by the Geneva 

                                                           
7
 Contagion is a mechanism describing how systemic failures can occur. It can be thought of as a “domino effect,” a 

failure of one institution leading to failures of more institutions.  
8
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Association in 2010 suggests a reason for this lack of research.
9
  The Geneva Association paper 

states that traditional insurance and reinsurance businesses are relatively small sources of 

systemic risk compared to banks and other financial institutions.  The Association posits that the 

structure of the traditional insurance model – upfront premiums, relative lack of 

interconnectedness, and “substitutability”
10

 -- reduces the systemic impact of the insurance 

industry.  The group also states systemic risk does exist for two specific groups that are involved 

in more non-traditional activities in insurance.  These two groups include firms involved in credit 

derivative security activities such as AIG and bond insurers such as FSA, AMBAC, and MBIA. 

This research paper adds to the existing research in systemic risk by specifically applying 

network models to a non-traditional insurance industry that experienced disaster stemming from 

systemic risk during the 2007 Financial Crisis: the credit default swap (CDS) security industry.   

 

Literature Review 

 

Researchers have recently proposed that network models can help model the systemic risk in 

financial systems which display complex degrees of connectedness.  Network models have been 

used in many fields such as communications, transportation, and utility distribution where the 

intricacies of the connections make optimization of the system flow analytically challenging.  

The application of networks to model systemic risk in financial systems has seen significant 

progress since the 2007 sub-prime mortgage initiated crisis.  Most current research in the area of 

financial network models uses institution-level financial firms or banks as the nodes in the 

system and their bilateral exposures as the arcs or connections.  Within this framework, the 

existing literature can be further divided by the types of data used to populate the model.  Nier et 

al (2008), Gai (2009), and Georg (2010) use simulated data to capture insights into the network 

system.  Castren (2009), Markose (2010), and Cont (2010) use empirical data to model their 

system. 

                                                           
9
 Geneva Association Systemic Risk Working Group, “Systemic Risk in Insurance – An Analysis of Insurance and 

Financial Stability,” March 2010. 
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Nier et al (2008) use simulated data in their network model to investigate the effect of the 

financial system’s structure on systemic risk.  In their simulated framework, banks serve as the 

nodes, and their interbank exposures act as the connections or the arcs in the network.  The 

authors determine the effects of capitalization, connectivity, and concentration on contagious 

default in this simulated framework.  They find that better capitalized banks are more resilient to 

contagious defaults, but the effect is non-linear.  The researchers also determine that 

connectivity’s effect on systemic risk depends on the level of connectivity.  At low levels, an 

increase in connectivity acts as a shock transmitter, increasing the contagion effect, whereas, at 

sufficiently high levels, the shock absorption effect dominates, and the initial shock is spread 

over more and more of the bank nodes.  Finally, the authors show that everything else equal, 

more concentrated banks are prone to larger systemic risk. 

Gai and Kapadia (2009) also investigate the dual nature of connectivity in their paper.  In their 

model, banks are again the nodes, and the interbank exposures are the arcs.  Then, they assume a 

random (Poisson) probability that each node is linked.  From this model, the authors find that the 

complex financial networks exhibit a “robust-yet-fragile” nature; greater connectivity helps 

lower the probability of contagion but increases its spread in the event that problems do occur.  

Furthermore, they find that illiquid markets for key financial assets compound the contagion 

problem, amplifying both the likelihood and the severity of the risk.  Finally, they argue that 

credit derivatives create far-reaching inter-linkages that reduce the probability of contagion with 

greater use under some plausible scenarios, but the resultant exposure leads to greater financial 

impact in a crisis. 

Georg and Poschmann (2010) continue the research in financial network models by using 

numerical simulations to examine the effect of a central bank in the network model of the 

financial system.  In their model, bank nodes including a central bank are connected via their 

balance sheet exposures and incorporate a constant relative risk aversion utility function in 

determining their portfolios.  The authors find that the presence of a central bank has a 

stabilizing effect on the financial system, and this stability effect may arise from the enhanced 

liquidity allocation provided by the central bank.  From their model, the researchers find that 

systemic risk increases with credit “lumpiness,” defined as fewer, large credit counterparties.  

The authors define two types of shocks, one resulting from the insolvency of a large bank and 
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resulting in contagion effects throughout the network and another in which a shock affects all the 

banks in a network via commonly held assets.  They posit that the destabilizing effect of 

common shocks pose a greater threat to systemic stability than the direct contagion effect. 

Castren and Kavonius (2009) use historical Euro Area Accounts data to calibrate a sector-level 

network model to help identify the potential key triggers to instability, to detect the contagion 

mechanisms in the system, and to determine the effects of leverage on a system’s resistance to 

shock and contagion in a multi-period setting.  In their model, the sectors include households, 

banks, non-financial corporations, insurance and pension fund companies, other financial 

intermediaries, general government, and the rest of the world.  They extend the accounting based 

bilateral exposure connected network to a risk-based network by applying a contingent claims 

analysis approach developed by Moody’s KMV.  The authors find that in the 10 years since the 

creation of the European Monetary Union, the interlinking arcs represented by the bilateral 

financial accounts have grown significantly with the banking sector playing a key role in the 

system.  They determine in their simulations that local cash-flow shocks can spread quickly via 

the bilateral exposures and even without the presence of defaults in the process.  The authors also 

find that sectors with highest leverage are the most vulnerable ones to shocks. 

Markose et al (2009) apply a complex agent-based computational variant of the financial 

network model to assess systemic risk.  The authors use FDIC data and market share data of 26 

banks to create a U.S. credit default swap (CDS) market-based network to investigate the 

consequences of the fact that the top 5 banks are responsible for 92% of the activity in the $16 

trillion U.S. CDS market.  Their network model uses the major banks as the main nodes in the 

system and incorporates a “non-U.S. bank” node to include monolines11, hedge funds, and other 

insurers.  The links are the bilateral obligations of the CDS.  The authors argue that the implied 

incentives of the credit risk transfer scheme included in Basel II may have contributed to the 

2007 Financial Crisis in two ways.  First, the use of risk transfer mechanism allows a decrease in 

the actual regulatory reserve requirements which may have stopped the contagion from 

spreading.  Second, the growth and popularity of the synthetic securitization of these risk 

transfers concentrates the risk among a few large dominant players.  The authors determine that 

                                                           
11

 Monolines in this study refer to bond insurance companies such as AMBAC, MBIA, and FSA who provided 
guarantees to financial assets.   
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the intervention of the Federal Reserve to bail out certain “too large to fail” institutions could not 

be averted because their large number of links to other institutions could have resulted in the 

failure of the whole CDS market and possibly the whole financial system.  Furthermore, they 

identify these “super-spreaders” and propose a “system risk ratio” which quantifies how much 

capital is lost collectively when one of these firms fail.   

Cont et al (2010) examine the financial network approach to modeling system risk in the 

Brazilian financial system and to measuring the systemic importance of a single institution in the 

system.  Their model incorporates Brazilian interbank exposure data including fixed income 

instruments, borrowing and lending, derivatives, foreign exchange, and instruments linked to 

exchange-traded equity risk.  The authors’ stress test the model by applying correlated market 

shocks to the balance sheets of all the banks in the network in various default scenarios.  They 

find that connectivity and concentration of exposures as measured by counterparty susceptibility 

and local network fragility are highly correlated to the systemic importance of an institution.  

The researchers also show that a minimum capital ratio reduces the effect of large institution 

defaults and that a similar effect can occur by requiring minimum capital reserves on only those 

systemically important firms and those who are exposed to them.  Finally, they introduce a 

“Contagion Index” which measures the expected loss to the network triggered by the default of 

the institution subjected to a market shock. 

 

 Common Findings in the Network Model Literature 

 

There seems to be some consensus in the Network Model research of systemic risk that structural 

parameters of a network, such as connectivity and concentration, matter as much as size when 

assessing the systemic importance of an institution.  Size alone cannot be used to determine a 

firm’s systemic importance.  The Cont study is unique in that it studied the effect of local 

measures of connectivity and concentration on systemic risk.  Most studies, like the Nier study, 

focus on aggregate measures of connectivity and concentration.  The Cont study found that their 
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two local measures, counterparty susceptibility and local network frailty, can significantly 

explain default contagion.   

There is some disagreement over the relationship between the connectivity of a network and 

contagion risk.  Some authors including Babus found that greater connectivity reduces contagion 

risk in interbank markets, and if a certain connectivity threshold is reached, contagion risk is 

practically nonexistent.  Gai, Georg and Nier came to different conclusions.  The Gai and Georg 

studies found that financial networks, especially interbank networks, exhibited a “robust-yet-

fragile” property.  Greater connectivity of a network does help to lower the probability of 

contagion but actually increases its spread in the event that contagion breaks out.  In the network 

constructed by Nier, greater connectivity led to a more resilient system after a certain 

connectivity threshold was reached, but for a low degree of connectivity, greater connectivity 

actually led to an increased contagion effect.  Thus, Gai, George and Nier observed that 

connectivity has a contingent nature: depending on the actual level of connectivity, greater 

connectivity can either increase or decrease contagion risk.  

Most papers focus almost exclusively on systemic risk through contagion effects, but the Georg 

and Cont papers argue that common asset shocks which affect all institutions of a network via 

commonly held assets may pose an even greater threat to systemic stability.  The Cont study, in 

particular, shows that systemic risk is understated when common shocks are not considered. 

This paper introduces a network model to characterize the systemic risk in the financial system 

as performed in some of the literature above.  The study differs from the other papers by 

specifically testing the structure of the network applied to two existing financial systems: the 

monoline bond insurer network and the credit default swap based network.  Furthermore, the 

paper identifies information that may not be publicly available but would be vital for regulators 

in monitoring systemic risk. 

 

Credit Derivative Securities Based Network 
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Credit default swaps have been commonly blamed for the 2007 Financial Crisis.  Nevertheless, 

CDS still dominate the credit derivatives market and are at the center of the global financial 

system.
12

  The U.S., Europe, as well as other global financial institutions possess large exposures 

to CDS markets.  The 2007 Financial Crisis underscored the challenge of measuring, monitoring 

and pricing credit risk.  

The CDS market can be recognized as a financial network structure that connects various 

financial institutions through complex CDS bilateral exposures and cross holdings.  Some major 

players in the center of the CDS market, such as AIG, have become “too interconnected to fail” 

since the failure of one of these institutions can bring down the entire financial system.  

Asymmetric and insufficient information disclosure imposes even more credit risk on financial 

institutions.  Therefore, it is critical to develop a network model specifically for the CDS market, 

so that regulators or other market participants are able to identify those systemically important 

financial institutions, as well assess the systemic risk under a certain set of circumstances.  This 

paper proposes a CDS network model to assist regulators in monitoring the CDS network system 

and identifying those “hot spots”
13

 which may result in total systemic failure. 

Currently, the CDS market can be viewed as a capstone in the financial system.  The CDS 

market is a network consisting of major banks, insurance companies, hedge funds and other 

institutions, all connected via CDS exposure, as shown in Figure 1.  The various sectors of the 

CDS market may be viewed as large nodes, such as the mortgage-backed securities (MBS) 

market or the European sovereign debt market.  The arcs between those markets and the CDS 

market are CDS exposures that cover the underlying securities from those markets.  If one 

market sector encounters a crisis, the loss shock can propagate to the banks and insurance 

companies through the exposure links. 

Figure 1. CDS Market in Financial System 
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 “Hot Spots” are nodes where the firm is “too big to fail”; where failure could have a devastating impact on the 
entire network. 
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In the CDS network, the large nodes, which represent certain market sectors, contain many small 

nodes which are banks and other major financial institutions.  Each of the smaller nodes may 

have exposure to more than one market sector, and each smaller node has its own balance sheet.  

The arcs linking different nodes are the various types of CDS exposures from different sectors. 

Figure 2. CDS Network Structure 
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Figure 2 illustrates a plausible CDS network structure.  Suppose a financial institution defaults as 

it suffers losses exceeding a certain threshold of its core capital.  If a European debt market crisis 

causes Bank A and Insurance Company C to become bankrupt, the losses due to their defaults 

can propagate to other nodes who have bought Euro Debt CDS from Bank A and Insurance 

Company C.  Given this condition, the Systemic Risk Ratio of a sector is defined as the ratio of 

the expected final loss of the total system to the expected initial loss of a sector:   

                            (                       )  (                    ⁄ ) 

Similarly, the Systemic Risk Ratio of a financial institution is defined as the ratio of the 

expected final loss of the total system to the expected initial loss caused by a specific 

institutional default: 

                                   (                       )  (                                ⁄ ) 

The network structure of different market sectors may vary considerably.  A big CDS seller in 

the RMBS market may be a big CDS buyer in the European debt market.  Separate modules can 

be established to analyze the shock from a specific market sector (e.g. European debt crisis, 
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sharp decline in housing prices), and to verify those “hot spots” in different market sectors.  This 

paper proposes that the following five factors have the greatest impact on the systemic risk ratio: 

 Weight of a sector in the CDS market 

 Capital level  

 Recovery rate (salvage ratio) 

 Default criterion 

 Degree of bilateral exposure within a sector 

The impact of adding a national clearing house into the financial system is discussed later in the 

paper.  This paper illustrates how a clearing house can restrain loss propagation and mitigate the 

systemic risk ratio. 

In summary, this paper establishes a framework eligible for further development and expansion 

through building modules for different market sectors and collecting bilateral exposure data from 

banks, insurance companies, and other financial institutions.  This network model aims to help 

regulators identify the companies that are too big or too interconnected to fail during any specific 

market crisis. 

 

Network Model for CDS Market 

Network Structure 

CDS contracts are off balance sheet items, and therefore, “neither the SEC nor any regulator has 

authority over the CDS market, even to require minimal disclosure to the market.”
14

 Hence, there 

is no explicit one-to-one bilateral CDS exposure data currently available.  However, for each 

FDIC registered bank, the gross CDS purchase or sell data can be acquired from the FDIC 

database.  

In order to construct a network structure for the CDS market in this study, an algorithm has been 

developed in which a bilateral connection matrix is generated stochastically in order to simulate 

                                                           
14

 “Testimony Concerning Turmoil in U.S. Credit Markets: Recent Actions Regarding Government Sponsored 
Entities, Investment Banks and Other Financial Institutional”, 
http://www.sec.gov/news/testimony/2008/ts092308cc.htm 
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a plausible CDS network reflecting the real market.
15

  The bilateral connection matrix is 

generated in a manner that replicates the gross buy (sell) totals for each bank, but with 

connections to other banks that are randomly generated portions of the totals.  In this way, the 

larger CDS market participants tend to have more connections and larger connections in the 

generated bilateral connection matrix.    

It is important to understand that the network model requires only one bilateral connection 

matrix for input in order to produce its results.  However, since the authors do not have access to 

complete data, they generate a large number of “plausible” matrices for the input, and run the 

model for each one.  This generates a large number of “plausible” results that can be averaged or 

analyzed in other ways.  This stochastic element of the model process would not be required if 

complete data were available.   

The details of the algorithm used to generate a “plausible” bilateral connection matrix are 

presented below.   

Suppose there are N FDIC banks participating in the CDS market (Assume the gross CDS buy or 

sell amount is greater than zero), which are indexed as i=1, 2,…, N.  The N+1th agent represents 

an external node that includes all other CDS trading entities except FDIC banks and is named 

“Other Entities.”  Based on the gross CDS buy (sell) data, the market share for each bank can be 

obtained in the following way: 

  
  

  
 
                                            

  
  

  
 
                                             

where, 

   is the amount of CDS which       buys. 

   is the amount of CDS which       sells. 

  is the total amount of CDS bought within all banks. 

                                                           
15

 This simulation of the one-to-one bilateral connections is performed as current data are not available.  
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  is the total amount of CDS sold within all banks. 

For      , the number of banks from which it buys CDS is calculated: 

  
    

      

where    is the total number of banks that have written CDS as guarantor (i.e. the number of 

banks for which S(i,s)>0 . 

Also, a     bilateral trading probability matrix X is derived from CDS market share data of N 

banks: 

1,2 1,

2,1

1,

,1 , 1

0 ...

0 .

. 0

... 0

N

N N

N N N

x x

x
X

x

x x





 
 
 
 
 
 

   

where      represents the likelihood of       buys CDS from      , equal to   
  (    

 ) when 

   , and is zero when    .  Since the bank index is following the order from the largest to the 

smallest CDS market share,                 ,            .  

A vector of random numbers is introduced to establish the bilateral connections of a plausible 

network structure.  For example, when establishing the bilateral connections for      , the 

number of banks it buys CDS from is represented by   
 .  Hence,   

  random numbers that are 

uniformly distributed from 0 to 1 are generated, denoted as     
            

 . 

In order to determine the first counterparty of      , a vector of trading probabilities        

        is obtained, where          ∑     
 
   ⁄ .  The trading relationships between       and 

other banks are noted as     
           , and where     

    indicates that       has bought 

CDS from      , whereas     
    means there is no CDS bilateral exposure between       

and      .  The bank index number of the first counterparty is   , where 

      { | ∑     
 
        

           }, and the counterparty is noted as       .  The basic 

idea of this algorithm is to split the total probability space into   
  sections that reflect the 
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corresponding trading probabilities, and the random number is used to anchor a bilateral 

connection within the total probability space and to determine the counterparty accordingly.  

After the first counterparty is determined, a similar random process is performed for selecting the 

second one.  However, the trading probability      is modified as          ∑     
 
   ⁄      , to 

exclude        from the bank list.  Then,     
  is used to determine the index number of the 

second counterparty.  By repeating this stochastic selection procedure,   
  counterparties of 

      are set.  A stochastic bilateral connection matrix can be established by adopting a similar 

stochastic process for                .  However, when     
      

   , a random number 

(0~1) is generated.  If it is less than 0.5,     
 =0; otherwise,     

 =0.  In the end, a stochastic bilateral 

connection matrix can be written: 

1,2 1,

2,1

1,

,1 , 1

0 ...

0 .

. 0

... 0

B B

N

B

B

N N

B B

N N N

I I

I
I

I

I I





 
 
 
 
 
  

 

Based on the stochastic bilateral connection matrix I, the matrix of CDS trading amounts is 

obtained: 

1,2 1,

2,1

1,

,1 , 1

0 ...

0 .

. 0

... 0

N

N N

N N N

T T

T
T

T

T T





 
 
 
 
 
 

 

where          
       

                      

The upper limit for the number of banks from which       can buy CDS is   
 .  If ∑     

 
    

  , the unallocated CDS purchasing amount is linked to the Other Entities.   

In addition, the user of the CDS network model is allowed to input predetermined CDS trading 

connections and trading amounts with the model simulating the rest of the network structure.  

Users can accordingly test the systemic risk ratios under different network structures.  
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Contagion Mechanism 

To simplify the model, naked CDS positions are prohibited.  A naked CDS position means that a 

bank buys CDS but does not hold the underlying debt or sells corresponding CDS to a third 

party.  

In this paper, the primary reason that a bank buys CDS is to hedge its CDS selling position.  

After the selling position is fully covered, the remaining CDS long position aims to hedge the 

credit risk of the debt it holds.  When       suffers losses exceeding 20% of its Tier One 

Capital
16

, it enters bankruptcy.  If       becomes bankrupt, all the CDS it has written become 

worthless.  Suppose that       has bought CDS from      , and therefore       needs 

additional capital to cover the emerged credit risk due to losing the CDS coverage.  It is assumed 

that       is not able to inject sufficient capital in time, hence       has to write down its 

capital, and the loss amount equals the notional amount of debt that CDS covered.  

Within a financial network,       may suffer losses caused by a specific bank default or 

multiple bank defaults due to a common shock.  If the aggregate loss       suffers becomes 

greater than 20% of its Tier One Capital, it defaults too.  The insolvency of       triggers 

further losses, and these losses propagate to other banks.  This domino effect stops only when 

banks no longer become bankrupt.  The ultimate loss that the system suffers may be a multiple of 

the initial shock.  

 

Measure of the Systemic Risk 

Company Failure 

The Company Failure scenario is designed to estimate the system risk that a specific bank (noted 

as Bank A) may pose to a certain market sector.  In this scenario, the initial loss to the system 

equals the total CDS amount that Bank A sells for that specific sector.  Remember this is still a 

scenario based stress test, which means that only one sector of the CDS market fails.  If any bank 

fails due to Bank A’s default, the losses spread to other banks.  The system becomes stable when 

banks stop failing.  

                                                           
16

 The 20% threshold of Tier One Capital is commonly proposed as a critical point in literature 
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The Systemic Risk Ratio of a financial institution is defined as the ratio of the expected final 

loss of the total system to the expected initial loss due to the institution’s default: 

                                   (                       )  (                                ⁄ ) 

Sector Failure 

The Sector Failure scenario is designed to assess the systemic risk associated with a market 

sector.  If a market sector collapses and the related debt defaults, all the banks that have written 

CDS in this market suffer losses.  The model sets the initial loss suffered by each bank equal to a 

proportion of the initial sector loss, where the proportion is the CDS market share of that bank.  

The losses start to spread if any of the banks become insolvent after suffering their initial losses.  

The Systemic Risk Ratio of a sector is defined as the ratio of the expected final loss of the total 

system to the expected initial loss from a sector failure:   

                            (                       )  (                    ⁄ ) 

Clearing House 

In this model, a clearing house is set up as an intermediate between CDS buyers and sellers.  By 

embedding a clearing house into the financial network model, loss shocks will not spread from 

an insolvent bank to other parts of the system.  The clearing house guarantees that CDS are still 

valid even though the original writer defaults.  The capital that is needed to support a clearing 

house can be estimated subject to a certain network structure, where accurate CDS bilateral 

exposure data is crucial for estimation.  Because bilateral exposure data is unavailable, the 

authors do not analyze the capital adequacy of the clearing house in this paper. 

By comparing the expected final loss of the system with the expected first round loss, the effect 

of a clearing house’s contribution to the system robustness is demonstrated. 

 

Sensitivity Testing 

There are five major factors that are incorporated into this network model including Segment 

Weight, Recovery Ratio, Capital Level, Default Criterion and Bilateral Exposure.  When 

performing a sensitivity test for one specific factor, the values of the other factors are held 
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constant.  However, since the true bilateral exposure structure is not known, only two major CDS 

players (JP Morgan Chase and Citibank) are chosen for investigating the impact of bilateral 

exposure between certain nodes on the whole CDS system.  The common network structure is 

derived from FDIC 2008 Q4 CDS aggregate exposure data. 

All the sensitivity tests are based on the Sector Failure scenario.  The sensitivity test results are 

summarized for each of the five factors’ effects on systemic risk ratio and expected system loss, 

with and without a clearing house.  Table 1 shows a list of default values of major factors (except 

degree of bilateral exposure), as well as the sensitivity test range. 

Table 1. The Default Value and Test Range of Four Major Factors 

Factor 

Default 

Value 

Lower 

Level 

Upper 

Level 

Segment Weight as of total CDS market 5% 0% 50% 

Capital level 100% 0% 500% 

Recovery Ratio (Salvage Ratio) 50% 0% 90% 

Default Criterion (as % of Tier One 

Capital) 20% 0% 100% 

 

 

1. Segment weight as a percentage of total CDS market 

First, this paper examines the effect of segment weight on the systemic risk ratio and 

expected system loss.  A higher segment weight implies that a sector represents more of 

the CDS market share, and therefore is more important.  The failure of a dominant sector 

is more likely to trigger a systemic failure. 

 

 

Figure 3. Impact of Segment Weight 
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Figure 3 shows these results.  The segment weight shows a positive but non-linear 

relationship with the systemic risk ratio.  With all other factors held constant, the 

systemic risk ratio increases sharply as segment weight rises from 0% to about 8%, and 

then plateaus at a high level.  The relationship between segment weight and expected 

system loss without a clearing house seems linear but shows some jumps in the lower 

range.  In contrast, there is a clear linear relationship between segment weight and 

expected system loss with a clearing house.  It is observed that the expected system loss 

with a clearing house is always smaller than without a clearing house.   

 

 

2. Recovery ratio (salvage ratio) 

In a second sensitivity test, this paper investigates the effect of the recovery ratio (salvage 

ratio) on the systemic risk ratio as well as the expected system loss.  High recovery ratios 

mitigate losses from defaulting banks and bolster the system’s robustness.  Keeping other 

factors the same, recovery ratios between 0% and 90% are tested. 
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Figure 4. Impact of Recovery Ratio (Salvage Ratio) 

   

  

 

From Figure 4, it is apparent that up to a threshold of 40%, the recovery ratio does not 

affect the systemic risk ratio.  Once the recovery ratio exceeds that threshold, the 

systemic risk ratio starts to decline and eventually converges to 1, which means there is 

no more contagion effect in the network.  Figure 4 also implies an effect of the recovery 

ratio on the expected loss which is a mixture of linearity and jumps, but this effect is in 

the opposite direction of the segment weight effect. 

 

3. Bank capital level and default criterion 

Capital level measures capital sufficiency.  Default criterion establishes the benchmark 

level of capital loss that a bank can bear while remaining solvent.  With a fixed default 

criterion, higher capital levels decrease the default probability.  If the capital level 

remains constant, a higher default criterion reduces the default probability.  The 

sensitivity test results of banks’ capital levels and default criteria (as % of Tier One 

Capital) in one sector are presented together because the effects of these two factors are 

essentially the same but on different scales.  

 

Figure 5. Impact of Capital Level 
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Figure 6. Impact of Default Criterion (as % of Tier One Capital) 

  

   

Figures 5 and 6 indicate that capital level and default criterion have almost identical 

effects on the systemic risk ratio if viewed on the same horizontal axes.  When these two 

factors increase, the systemic risk ratio gradually decreases to 1.  Similarly, the impact of 

these two factors on the expected system loss seems to be identical.  Particularly for the 

network with a clearing house, the expected loss is constant.  This implies that the 

clearing house absorbs the first round losses, and thus capital level and default criterion 

can be viewed as independent of expected system loss. 

 

4. Degree of bilateral exposure 
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Degree of bilateral exposure is expressed as the bilateral exposure amount, which has two 

opposing effects.  Bilateral exposures may propagate losses to other institutions and then 

to the whole system, or the losses may be absorbed into the network via the bilateral 

exposure.  

 

In a specific bilateral exposure sensitivity test, the authors establish a series of nominal 

CDS exposure amounts that JP Morgan Chase buys from Citibank, ranging from $0 to 

$100 million.  The authors initially investigated the effect of bilateral exposure on the 

systemic risk ratio.  From figure 7, two opposing effects can be seen over different ranges, 

generating a non-linear and non-monotonous curve.  First, for low levels of exposure, the 

systemic risk ratio rises along with increases in bilateral exposure until a threshold is 

reached, and then it starts declining.  As the exposure increases further, the systemic risk 

ratio rises again.  But when exposure is sufficiently large, further increases in bilateral 

exposure decrease the systemic risk ratio. 

 

Figure 7 also shows how the degree of bilateral exposure may affect the expected system 

loss, where a similar, non-linear relationship is observed in the system without a clearing 

house.  However, when the exposure becomes sufficiently large, the expected system loss 

continues to rise as exposure increases, which is the opposite effect of the systemic risk 

ratio.  This divergence implies that the systemic risk ratio may underestimate the 

systemic risk in some conditions.  Consequently, using the systemic risk ratio is not 

enough to assess systemic risk.  For the system with a clearing house, the system loss 

curve emulates a strangle
17

 payoff curve.  

 

Figure 7. Impact of bilateral exposure (JP Morgan Chase and Citibank) 

  

                                                           
17

 A long strangle is an investment strategy implemented by buying both a call option and a put option of the same underlying security. 
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CONCLUSION 

This paper applies network models to the CDS market.    

The CDS network model indicated that higher segment weights, lower recovery ratios, lower 

capital levels and a lower default criterion resulted in higher systemic risk ratios, and these 

relationships were non-linear in nature.  In contrast, the impact of bilateral exposure the on 

systemic risk ratio was more complicated, non-linear and non-monotonous.  

Besides the systemic risk ratio, the other measure of systemic risk tested was the expected 

system loss.  Under the scenarios without a clearing house, the sensitivity tests of the five factors 

on the expected system loss showed two general types of impacts.  For segment weight and 

recovery ratio, the relationship was a mixture of linearity and jumps.  Segment weight exhibited 

a positive relationship with expected system loss while recovery ratio exhibits a negative 

relationship.  Capital level and default criterion sensitivity tests revealed negative, non-linear 

relationships while bilateral exposure had a more complicated, non-linear relationship with the 

expected system loss.  

In scenarios where a clearing house was introduced to the system, the study showed that capital 

level and default criterion no longer affected the expected losses.  Not surprisingly, the expected 

loss with a clearing house was always lower than the expected loss without a clearing house.  

This difference in expected system loss in the two scenarios was most notable when the default 

criterion, the capital level, or the recovery ratio was low or when the segment weight was high.  
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As seen in the bilateral exposure sensitivity tests, solely using the systemic risk ratio to assess 

systemic importance may be misleading because the expected system loss can still rise while the 

systemic risk ratio is declining.  Thus, the authors propose incorporating both the systemic risk 

ratio and expected loss to assess systemic risk more comprehensively.  

This study points out to the Financial Stability Oversight Committee critical data that are not 

available publicly or currently missing.  Currently, there is no public data on one-to-one bilateral 

CDS exposures.  Stochastic algorithm was performed to simulate the one to one exposures in the 

CDS market.  By structuring the models so that the stochastically generated data can be replaced 

with data that may be obtained by the Financial Stability Oversight Committee, flexible models 

can be created to measure systemic risk in the financial system. 
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