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Abstract

We propose a novel multi-period bilateral clearing framework, where the

level of systemic risk is mitigated through an optimal bailout allocation strat-

egy. The interbank liability network evolves stochastically over time, with

default events having a persistent impact on the balance sheet structure of

the network. The optimal bailout policy and associated clearing payments are

recovered as the solution of a constrained stochastic dynamic programming

problem. We develop a numerical analysis showing that optimal bailout allo-

cations are able to reduce significantly the systemic risk level when liability

exposures are heterogeneous and volatile. Our analysis provides a tool to sup-

port regulator decisions of when and where to intervene so to prevent the onset

of potential threats to financial stability.

�School of Industrial Engineering, Purdue University, West Lafayette, IN, 47906.
Email:capponi@purdue.edu

�School of Industrial Engineering, Purdue University, West Lafayette, IN, 47906.
Email:chen621@purdue.edu

1



1 Introduction

Financial institutions are connected to each other via a sophisticated network of

multilateral exposures. Through these linkages, distress or failure of a financial in-

stitution triggering large unexpected losses on its trades, can seriously affect the

financial status of its counterparties, possibly leading them into default. The recur-

sive interdependence in this network of exposures is typically referred to as systemic

risk, and has been responsible for many failures experienced by mono-line insurers

and investment banks during the crisis.

The intricate structure of linkages can be naturally captured via a network rep-

resentation of the financial system. Such a network models the interlinking ex-

posures between financial institutions, and can thus assist in detecting important

shock transmission mechanisms. This is especially relevant in the current post-crisis

regime, given a series of decisions taken by governmental authorities to better moni-

tor systemically important entities. Moreover, as also mentioned in IMF (2010), most

policy recommendations are targeted towards structural changes which can mitigate

the adverse consequences emerging in such closely intertwined systems during times

of crisis. Those include refinements in the lender of last resort principles, new fund-

ing liquidity and leverage restrictions for banks, as well as capital surcharges based

on an institution’s likely contribution to systemic risk, see also Staum (2012) for a

survey.

Starting with the seminal paper by Allen and Gale (2001), who employed an

equilibrium approach to model the propagation of financial distress in a credit net-

work, many other approaches have recently been proposed to explain systemic risk.

Gai and Kapadia (2010) use statistical techniques from network theory to model

how contagion spreads via direct and indirect counterparty exposures, and analyze

how the knock-on effects of distress at some financial institutions can force other
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entities to write down the value of their assets. Along similar lines, Cifuentes et al.

(2005) consider fire sales of illiquid assets, and provide an equilibrium framework to

compute prices for illiquid assets, as well as the firms’ capital after accounting for

losses due to illiquidity. Battiston et al. (2012a) describe the network time evolution

using stochastic processes, and introduce the financial accelerator to characterize the

feedback effect arising from changes in the financial conditions of an agent. Battis-

ton et al. (2012b) demonstrate that systemic risk does not necessarily decrease if the

connectivity of the underlying financial network increases.

Our paper belongs to the stream of literature generated from the seminal con-

tribution of Eisenberg and Noe (2001), who developed a clearing system framework

consistent with bankruptcy laws, to analyze systemic risk in interbanking networks.

Such a framework was utilized and extended along several directions. Staum and

Liu (2012) analyze how systemic risk in financial networks should be quantified and

allocated to individual institutions. Rogers and Veraart (2012) relax the assumption

made in Eisenberg and Noe (2001) that a defaulting bank can liquidate its assets at

face value to repay due liabilities, and identify circumstances under which banks have

incentives to rescue others. In the context of insurance, Blanchet and Shi (2012)

consider a financial network involving two types of participants, insurance and rein-

surance companies, and provide a model to capture the total losses generated from

default cascades originated from a reinsurance company. The literature discussed so

far has considered structural models of systemic risk. On the empirical side, Cont et

al. (2012) and Angelini et al. (1996) have analyzed, respectively, Brazilian and Italian

interbank systems, showing how defaults transmit through the payment system and

originate systemic crisis.

The above mentioned studies have analyzed the consequences caused by defaults

using a static model of counterparty exposures. Although static models provide in-

sights about immediate consequences caused by defaults, they do not capture the
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propagation and aftershocks of default events. We advance the above literature by

developing a multi-period clearing system, where the level of the systemic risk is

controlled in each period so to optimize a target systemic loss over a fixed time hori-

zon. Building on the original framework proposed by Eisenberg and Noe (2001), we

consider an interbank liability structure which evolves stochastically, and explicitly

model the persistent impact that the default of a node has on the network. The

regulator, hereon referred to as lender of last resort (LLR), mitigates systemic risk

by providing bailout loans to illiquid, but solvent nodes. Such an allocation pol-

icy is consistent with practice, as also discussed in Rochet and Vives (2004). We

work under the hypothesis that the LLR has complete information on the liability

structure of the network. We remark that even if such data is not readily available,

it is possible to construct accurate proxies for interbank liabilities using standard

methodologies, see for instance Docherty and Wang (2010). Such procedures use

transaction data from the U.S. Federal Fund Markets as proxies for decomposing the

observed total liabilities into interbank liabilities.

We reformulate the problem of finding an optimal clearing sequence within a

Markov decision framework, and show that the optimal bailout policy and clear-

ing payment sequence may be recovered as the solution of a constrained stochastic

dynamic programming problem. We devise an an approximate stochastic dynamic

programming methodology to efficiently solve the dynamic programming problem

when the network is high dimensional. Our methodology is based on the rollout

algorithm, see also Bertsekas and Tsitsiklis (1996), and selects a bailout plan us-

ing a suitable combination of a finite set of heuristics, each of them computing a

suboptimal allocation policy.

We define two measures to capture the residual systemic risk and residual default

rate in the network after controlling for the optimal rescue plan. By means of a

numerical analysis, we show that high levels of systemic risk and default rates ap-
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pearing in networks whose interbank liabilities are highly volatile and heterogeneous

can be reduced significantly when an optimal bailout plan is provided.

The rest of paper is organized as follows. Section 2 introduces the building blocks

of our framework. Section 3 develops the multi-period clearing payment system.

Section 4 presents the construction of the clearing payment sequence. Section 5

performs a numerical analysis to assess systemic risk mitigation arising in specific

network configurations. Section 6 concludes the paper.

2 The Framework

We define the structure of the financial network, and introduce basic notation and

definition used throughout the paper.

2.1 Financial Network

We model the financial system as a digraph G � �V,E�, where the set V of nodes

represents the financial firms, and the set E of edges the liability relations between

nodes (a direct edge between node i and j indicates that i is a debtor of j). We fix

a finite time horizon, divided into discrete intervals t, t � 1 , t > 0,1, . . . , T � 1 .� � � �
The state of the financial network is characterized by 3-tuple Lt, ιt,at , Here, Lt

is the interbank liability matrix at t, with Ltij denoting the amount of liabilities owed

by i to j at t. We use ιt to denote the operating cash inflow vector, i.e. ιti quantifies

the proceeds generated from operation activities of node i at t. The vector at is

the illiquid assets vector, with ati being the amount of illiquid assets held by node

i, which he cannot readily convert into cash. Each node is initially endowed with

a certain amount of illiquid assets, used to determine its solvency state, and only

� �
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transferred as part of the default liquidation procedure to other nodes, as detailed

later.

The interbank liabilities and operating cash inflows are modeled as discrete time

stochastic processes, to capture the uncertain nature of the financial environment.

We use lt to denote the total liability vector, with lt �i Pj�~i,j>V Ltij denoting the

amount of total obligations of node i to all other nodes at t. Further, we denote by

Πt
ij �

¢̈̈̈̈
¦̈̈̈
¤̈

Ltij
lti

if lti A 0

0 if lti � 0,

the relative size of liabilities owed by i to j at t. Here, Πt is the associated liabilities

proportion matrix.

2.2 Lender of Last Resort (LLR)

We introduce an outside entity, whose goal is to provide bailout loans to illiquid yet

solvent nodes, so to optimize the expected flow of total payments across the network.

A node is said to be rescued if it receives a bailout loan from the LLR. A node

uses cash remaining after paying liabilities to his creditors in the network, to repay

some (or all) of the bailout loan amount currently owed to the LLR.

We denote by ot Ci 0 the bailout loan granted by the LLR to node i at t; ot is

the associated vector. Further, bti denotes the amount of repaid loan by i at t. This

leads to the following inductive relation for the amount qti of unrepaid loan of node

i by time t:

¢̈̈̈̈
¦̈̈̈
¨
q0
i � 0

qt�1
i � �qti � oti � bti��1 � rc� , t > �0,1, . . . , T � 1�.¤
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We distinguish between the interbank interest rate r from the rate rc at which bailout

loans need to be repaid. 1

We denote by B the initial budget at disposal of the LLR. The latter will allocate

it to financially distressed nodes according to a self-financing strategy. In other words,

we require the following condition to hold

n

Q
i�1

�oti � qti� B B�1 � rc�t , t > �0,1, . . . , T � 1�.

2.3 Illiquidity and Insolvency

We denote by pti the total payment of node i at time t. We use vt Ci 0 to denote the

available cash to i at t. The following inductive relation allows computing vt�1
i from

vti .

¢̈̈̈̈
¦̈̈̈
¨
v0
i � 0

vt�1
i � �1 � r��Pj~�i,i>V Πt

jip
t
j � ι

t
i � v

t
i � l

t
i � q

t
i�� , t > �0,1, . . . , T � 2�.¤

In words, the cash available to node i at time t, plus inflows coming from payments

made by his debtors and cash generated from his operations, can be reinvested at

the market rate, only after netting with the amount used to repay his creditors and

the LLR. For brevity, we define

cti � Q
j~�i,i>V

Πt
jip

t
j � ι

t
i � v

t
i . (2.1)

We impose that in each period, a previously rescued node which is currently liquid,

solvent but still indebted to the LLR must decrease the owed amount to the maximum

1Indeed, all loans granted from the Fed under the emergency program were repaid with an
interest rate ranging between 0.5% to 3.5%, which was different from the prevailing market rate.
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possible extent. Concretely, we require

bti � min��cti � lti��, qti� , t > �0,1, . . . , T � 1�. (2.2)

We define a node i > V to be illiquid at time t if ct @i lti. We use eti to denote the

net assets of node i at time t. This is given by

eti �
T�1

Q
τ�t�1

�1 � r���τ�t� Q
j~�i,j>V

Et �Lτji� �Et �lτi � � lti � c
t
i � a

t
i.

�
�

�
�

Here, for a given random variable X, we denote by Et�X� the conditional expectation

of X given the information set available at time t.

A node i > V is said to be solvent at time t if et Ci 0.

2.4 Default

We describe the mechanism triggered upon default of a node. If node i defaults

at t, its illiquid assets are immediately distributed to his creditors according to a

proportionality rule. The market value of node i’s illiquid assets is then detracted

from the amount of total liabilities owed by i at the default time. The node i is then

managed by a trustee from period t � 1 to T � 1. The trustee collects (1) payments

that node i is supposed to receive from its debtors in the network, and (2) illiquid

assets, possibly transferred to node i after the liquidation procedure completed by

any other defaulted node. Both liquid and illiquid assets collected by the trustee are

distributed to node i’s creditors after the time horizon.

Definition 2.1. A node is said to default at time t if it is (1) illiquid and insolvent

at t or (2) illiquid and solvent at t but not rescued by the LLR.

The default indicator vector at time t, denoted by dt, is defined as dt �i 1 if node
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i defaulted at time s @ t, and 0 otherwise. d0 is the zero vector. For future purposes,

we denote by ∆dt �
�

1� dt � dt the vector indicating the nodes defaulting in the time

period �t, t � 1�.
Next, we specify how the illiquid assets of a defaulted node are distributed to his

creditors within the network. Suppose node i defaults at t. Then his illiquid assets

are transferred based on the relative fraction of debt owed to his creditors, netted of

the payment done at the default time. More specifically, define

wtij �

T�1

Q
τ�t

�1 � r���τ�t�Et�Lτij� � Πt
ijp

t
i for i, j > V

wti � Q
j~�i,j>V,

wtij.

Then, the illiquid assets of each node are governed by the following recursive equation

a0
i �� a0

ati � �1 � r����1 � ∆dt�1
i �at�1

i � ∆dt�1
i �at�1

i �wt�1
i �� � Q

j>V,j~�i

∆dt�1
j

wt�1
ji

wt�1
j

min�at�1
j ,wt�1

j ���
If i were not to default at t � 1, its illiquid assets at t include the ones owned in the

previous period, plus all assets distributed from his creditors who defaulted at t � 1;

otherwise, it includes the illiquid assets netted of the debt owed to his creditors in the

previous period, plus the illiquid assets transferred from his creditors who defaulted

at t � 1.

3 The Multi-Period Clearing Payment System

We develop a multi-period clearing payment system, which generalizes the single

period clearing system in Eisenberg and Noe (2001). In addition, we model the

consequences that a default has on the future evolution of the network, and we allow
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the LLR to optimally control the size of unrepaid liabilities through the network. We

ensure that in each time clearing payments satisfy the standard conditions imposed

by bankruptcy laws: limited liability of equity, priority of liability over equity, and

proportional repayments of liabilities in default. This leads to the following

Definition 3.1. Given a dynamic network, ��Lt, ιt��T�1
t�0 , a time sequence of 2-tuples

pt,ot T�1
t�0 is a clearing sequence if it satisfies the following conditions:�� ��

a. Systemically efficient rescuing. The LLR provides bailout loans to illiquid yet

solvent nodes so to

maximize�ot�T�1t�0

T�1

Q
t�0

�1 � r��tQ
i>V

pti.

b. Proportional repayment of liabilities. A node i > V pays Πt
ijp

t
i to node j at time t,

were node i not to default before t.

c. Absolute priority. In each time t, if a node i does not default at time t, it pays in

full its liabilities or, if it defaults at time t, it uses all of his available cash to pay

his current creditors. If it defaults before time t, it does not make any payment.

Formally, for i > V , t > 0,1, . . . , T � 1 , we have� �

pti �

¢̈̈̈̈
¨̈̈̈̈
¦̈̈̈
¨̈̈̈̈̈
¤

lti, if dti � 0 and ∆dti � 0,

cti, if dti � 0 and ∆dti � 1,

0, if dti � 1.

d. Admissible bailout loans. The LLR provides bailout loans only to illiquid yet

solvent nodes, i.e. for i > V at time t,

¢̈̈̈̈
¦̈̈̈
¤̈
oti A 0 � cti @ l

t
i and eti C 0 and dti � 0,

oti � 0 
 �cti @ lti and eti @ 0� or dti � 1.
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e. Effective bailout loans. Nodes are rescued with the minimum needed amount, i.e.

oti A 0� oti � l
t
i � c

t
i.

We remark that the admissible bailout loan condition above is consistent with

Rochet and Vives (2004), where it is claimed that bailout rules of this type are

typically followed by regulators.

4 Construction of Clearing Sequence

The systemically efficient rescuing requirement in the definition of a clearing sequence

requires the development of a strategy which optimally decides when and how to

allocate bailout loans. To this purpose, we introduce a Markov decision framework,

and utilize stochastic dynamic programming techniques to recover clearing sequences.

4.1 Markov Decision Process

We consider a Markov decision process in a discrete-time finite horizon. Time

is divided into discrete intervals called decision epochs that are indexed by t >

�0,1 . . . , T � 1�. The t-th epoch corresponds to the interval �t, t � 1�. We define

X t � �Lt, ιt� > X to be an exogenous stochastic process, whose first component is

the realization of the matrix of liabilities in epoch t � 1, and whose second com-

ponent is the realization of the operating cash inflow vector in epoch t � 1. The

n-dimensional bailout loan vector, ot Ot t> , represents the decision process with O

being the feasible set of bailout loans. The set X is assumed countable and Ot is finite

for t �0,1 . . . , T �1�. We then define the state at time t to be st �vt t> � ,a ,qt,dt� > S,

where S is countable. We recall that the first three components are n-dimensional
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vectors denoting, respectively, cash, illiquid assets, and unrepaid bailout loans asso-

ciated to each node, while the last component is a n-dimensional vector indicating

nodes defaulted by time t. In the beginning of decision epoch t, event occurrence

follows the timeline illustrated in Figure 1. First, the state st is measured. Then,

the stochastic process X t is observed, and finally the decision ot is taken.

t

st
measured

Xt

observed

ot
taken

t � 1

st�1
measured

Xt�1

observed

ot�1
taken

Figure 1: The time line indicates the sequence of event occurrence in epoch t.

Assume we are in epoch t, with triplet �st,ot,X t�. Let f�st,ot,X t� be the vector-

valued function yielding the state st�1 at the beginning of decision epoch t � 1. We

define the lattice operation

x , y �� min x1, y1 ,min x2, y2 , . . . ,min xn, yn� � � � � � ��

for two vectors, x,y > Rn. Next, we illustrate how f maps from st to st�1.

f1�st,ot,X t� � st�1
1 �� vt�1

� �1 � r��ct � lt � qt��,
f2�st,ot,X t� � st�1

2 �� at�1
� �1 � r����1 � ∆dt� � at � ∆dt � �at �wt�� � �wtij

wti
	
�

�∆dt � �at ,wt���� ,
f3�st,ot,X t� � st�1

3 �� qt�1
� �1 � rc��qt � ot � bt�,

f4�st,ot,X t� � st�1
4 �� dt�1

� dt � ∆dt,

x
where x � y denotes the component-wise product of vectors x and y, � ij

xi
� denotes

x
the matrix whose �i, j�th entry is ij

x , and
i

�y�� denotes the vector whose ith entry
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equals max�0, yi�, and wt is a vector whose entries are given by wti . Recall from

Eq. (2.1) that ct depends on vt and X t. Similarly, from Eq. (2.2), we have that bt

depends on vt, X t, and qt. Hence, the state transition function is well defined. The

state transition probability is given by

Ps st�1 st,ot � PX ω � st�1
� f st,ot,X t ω , (4.1)� T � � � � ���

and represents the probability that the state at time t � 1 is st�1 conditional on the

current state st, and the decision ot taken at time t.

The feasible set of decision policies depends on st, and must verify the constraints

indicated in the above definition of clearing sequence. Concretely, we define the

constraint region

O
t�st� � �ot � pti � �1 � dti�min�lti, cti � oti� ,

oti A 0� cti @ l
t
i and eti C 0 and dti � 0,

oti � 0
 �cti @ lti and eti @ 0� or dti � 1, (4.2)

oti A 0� oti � l
t
i � c

t
i

Q
i>V

�qti � oti� B B�1 � rc�t for i > V �,

where the first constraint indicates that the bailout loan should satisfy the absolute

priority requirement in definition 3.1, the second to fourth constraints indicate that

only illiquid yet solvent nodes can be rescued, and with the minimum needed amount.

The last constraint is the budget constraint of the LLR.

Let zt�st,ot,X t� be the single period total payment function at time t when the

state is st, the decision taken is ot, and the realized process is X t. This is given by

zt�st,ot,X t� �Q
i>V

pti ��Q
i>V

pti�st,ot,X t�.
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Our objective is to maximize the expected total discounted sum of payments, over the

time horizon across all feasible policies π � �o0
π,o

1
π, . . . ,o

T�1
π �. Denoting the optimal

value by Z0�s0� and the set of all feasible policies by Π � O0
�O1 �

� � � � �OT 1, we

have the total payment function at time 0 is given by

Z0�s0� � max
π>Π

E �T�1

Q
τ�0

�1 � r��τzτ�sτ ,oτπ,Xτ�	 . (4.3)

We next prove the existence of an optimal policy to Eq. (4.3), which can be found

using the principle of dynamic programming.

Proposition 4.1. There exists at least one feasible policy to Eq. (4.3).

Proof. We claim that ot �π 0 for t > 0,1, . . . , T � 1 is a feasible policy. Given any

state st, it is obvious that 0 satisfies the second to fourth constraints in Eq. (4.2).

For all i > V , by definition, q0
�i b0

�i 0. By induction, qt �i bt �i 0 for all t, hence

0 satisfies the last constraint in Eq. (4.2), as Pi>V �qt �i oti� � 0 B B�1 � rc�t for all

t. It remains to show that 0 also satisfies the first constraint in Eq. (4.2). We next

prove that there exists a vector pt satisfying the first constraint. This is equivalent

to showing that the mapping

� �

Φ�pt� �� �diag�1 � dt��Πt�pt � ιt � vt�� , lt

has a fixed point. Because Φ is the composition of two positive increasing functions,

respectively y � diag�1 t �
� d ��Πt y � ιt � vt� and y � y , lt, it must be a positive

increasing function on pt. By Tarski’s fixed point theorem, the set of fixed points of

Φ is not empty; hence, there exists at least one vector pt satisfying the first constraint

in Eq. (4.2). This concludes the proof.

When a bailout allocation ot is specified, the sequence pt is uniquely de-� � � �
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termined provided that the subgraph of the financial network induced by the set of

non-defaulted nodes satisfies the regularity condition introduced in Eisenberg and

Noe (2001). A simple sufficient condition guaranteeing a sequence of regular sub-

graphs induced by non-defaulted nodes is that all nodes have positive operating cash

inflows at all time t.

Lemma 4.2. Let the financial network be such that the subgraphs induced by the non-

defaulted nodes are regular for all t. Then, if a bailout allocation �ot� is specified,

the sequence �pt� is uniquely determined.

Proof. Consider a generic epoch t. We need to show that there exists a unique

solution pt to the first system of equalities in (4.2). The first constraint in Eq. (4.2)

may be rewritten as

pti �

¨̈̈̈
¦̈̈̈
¨

min�lti,Pj~�i,j>V Πt
jip

t
j � ι

t
i � v

t
i � o

t
i�, if dti � 0,

0, if dti � 1.

¢

¤
Let i > �k > V Sdt �k 0�. Since ot is specified, ιti and vti are known, then we can define

ιt �i vt �i oti as ι̂ti and simplify the first equation as

pti � min�lti, Q
j~�i

j>�k>V Sdtk�0�

Πt
jip

t
j � ι̂

t
i¡.

Since the subgraph induced by set �k > V Sdt �k 0� is regular, it was shown in Eisenberg

and Noe (2001) that the above system of equations has a unique solution, pti.

Let

Zt�st� � max
oτπ>O

τ

¦tBτBT�1

E �T�1

Q
τ�t

�1 � r���τ�t�zτ�sτ ,oτπ,Xτ�W st,otπ	 .
Following, we show that Zt�st� satisfies the Bellman equation.

15



Lemma 4.3. Zt�st� satisfies the Bellman equation.

Proof.

Zt�st�
� max

oτπ>O
τ

¦tBτBT�1

E �T�1

Q
τ�t

�1 � r���τ�t�zτ�sτ ,oτπ,Xτ�W st,otπ	

� max
oτπ>O

τ

¦tBτBT�1

�zt�st,otπ,X t� � �1 � r��1E � T�1

Q
τ�t�1

�1 � r���τ�t�1�zτ�sτ ,oτπ,Xτ�W st,otπ	¡
� max

oτπ>O
τ

¦tBτBT�1

�zt�st,otπ,X t� � �1 � r��1

E �E � T�1

Q
τ�t�1

�1 � r���τ�t�1�zτ�sτ ,oτπ,Xτ�W st�1,ot�1
π 	W st,otπ	¡

� max
otπ>O

t
�zt�st,otπ,X t� � �1 � r��1

E
<@@@@@>

max
oτπ>O

τ

¦t�1BτBT�1

E � T�1

Q
τ�t�1

�1 � r���τ�t�1�zτ�sτ ,oτπ,Xτ�W st�1,ot�1
π 	

RRRRRRRRRRRRR
st,otπ

=AAAAA?
£̈̈̈
§̈̈̈
¥

� max
otπ>O

t
�zt�st,otπ,X t� � �1 � r��1E �Zt�1�st�1�T st,otπ�� . (4.4)

The third equation comes from the law of iterated expectations. The fourth equation

follows from the Markovian property of the decision process. This concludes the

proof.

For future purposes, we refer to the quantity zt�st,ot ,X t� �1 r�� �
� �

1E �Zt 1
π �st�1�S st,otπ�

in Eq. (4.4) as theQ-factor at time t, and to the second term �1 r��1E �Zt�1�st��
1�S st,otπ�

as the cost-to-go function at time t.
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5 Computing the Optimal Bailout Strategy

A financial network usually consists of a large number of nodes. This indicates that

the above defined stochastic dynamic programming problem may become compu-

tational intractable as the state space grows exponentially, making it unfeasible to

compute the Q-factor. In this section, we develop a suboptimal solution approach,

and use techniques from neuro-dynamic programming to provide an efficient solution

to the problem, see Bertsekas and Tsitsiklis (1996). Given the network state in each

time, such techniques employ heuristic policies and Monte-Carlo simulation to con-

struct the Q-factor approximation. Then, they apply the so-called rollout algorithm

to select the suboptimal policy.

5.0.1 Q-factor Approximation

In each decision epoch t, given the state st and the realized stochastic process X t, the

k-th heuristic computes the Q-factor approximation for the optimal policy through

the following steps.

Step 1. Compute the value ztk�st,otπk ,X t� by heuristic k and the next state by

st�1 t t t�πk
f�s ,oπk ,X �, where otπk is the bailout loan selected by policy k.

Step 2. Generate M random paths �X t�1
m ,X t�2 T �m , . . . ,Xm�,m 1, . . . ,M .

Step 3. Compute the value zτ �sτ ,oτ ,Xτ � and the simulated state trajecto-

ries sτ�1 �πk,m
f�

k,m πk,m πk,m m

sτ τ τ � � � �πk,m
,oπk,m,Xm� from τ t 1 to T 1, m 1, . . . ,M.

Step 4. Denote by H t
k�st,X t� the Q-factor approximation derived from heuristic k

given by

H t
k s

t,X t
�ztk s

t,otπk ,X
t

� 1 � r �1E Zt�1
k st�1

πk
st,otπk� � � � � � � � �T �
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�ztk�st,otπk ,X t� � T�1

Q
τ�t�1

�1 � r���τ�t� 1

M

M

Q
m�1

zτk,m

5.0.2 Heuristics

We consider one myopic and two non-myopic heuristics to produce the Q-factor

approximations. Myopic heuristics only consider the present state of the network,

while the non-myopic heuristics account for expected values of future states of the

network.

(1) Myopic Heuristic: It ignores the cost-to-go function and only computes the

solution which maximizes the single period payment function. For each decision

epoch t, given st and X t let us denote the solution and objective value derived

by this method as otπ1 and zt1 respectively. They are given by

otπ1 � arg max
ot>Ot

zt�st,ot,X t� zt1 �Q
i>V

pti�st,otπ1 ,X t�.

We call H t
1�st,X t� the Q-factor approximation obtained using this heuristic.

Our choice of this heuristic is motivated by financial and optimality considera-

tions. From a financial perspective, greedy approaches are in line with behavior

of regulators. As discussed in Hoggarth et al. (2004), under systemic condi-

tions the objective of the latter is to restore financial stability immediately. The

myopic method captures this notion, as it maximizes the liquidity injected into

the network as early as possible. From an optimality perspective, the myopic

method may perform better than other greedy-type algorithms if liabilities and

operating cash inflows in the network have a homogeneous composition.
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Definition 5.1. ��Lt, ιt��T�1
t�0 is homogeneous if for each t, Lt has the same

probability law as Ltk,l, for any pairs �i, j�
ij

x �k, l�, and ιti has the same law as ιtj,

for i x j.

Given a homogeneous network, the expected values of future liabilities and oper-

ating cash inflows are the same for all nodes; this means that rescuing one node

is not necessary better than rescuing any other. However, if more liquidity is

injected earlier into the network, it can generate a higher flow of future payments

as it stays longer into the system. Hence, maximizing the liquidity pumped into

the network in each time may be more effective than using other greedy criteria.

(2) Too-Big-To-Fail Heuristic: It rescues illiquid yet solvent nodes according to

balance sheet size (nodes with largest balance sheet values are rescued first),

until the bailout budget is exhausted. For decision epoch t, given st and X t, we

perform the following

Step 1. Assign ot � 0, and compute

pti �

¢̈̈̈̈
¨̈̈̈̈
¦̈̈̈
¨̈̈̈̈̈

lti, if dti � 0 and ∆dti � 0,

cti, if dti � 0 and ∆dti � 1, for i > V.

0, if dti � 1,¤
This step computes the payments that will be made by each node if the

bailout loan is not provided.

Step 2. Compute cti and net asset eti for each node i. Recall from Eq. (2.1)

that ct depends on pti , vt and X t. Identify illiquid yet solvent nodes as

satisfying ct @i lti and et Ci 0.
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Step 3. Compute the balance sheet size of node i as

<@@@ T

@ Q
��1 r� T

� ��τ�t� Q Lτ
�

at
A� �� ct
=

E γ AA �A Q�1 r���τ�t�
>

� t � � �i i i?
�j Et �lτi �	 ,

τ�t�1 j�~i,j>V τ�t

where the first term represents the amount of total assets, while the

second term the amount of total liabilities.

Step 4. Denote the bailout loan vector by otπ2 . Rank-order the nodes in de-

creasing order of balance sheet value. Following the rank, provide the

bailout loan ot �π2,i
lt �i cti to each node i, until all the nodes have been

rescued or the bailout loan budget is exhausted.

Step 5. The objective value zt2 is given by zt �2 Pi>V pti�st,otπ2 ,X t�.
We call H t

2�st,X t� the Q-factor approximation obtained using this heuristic.

(3) Reward-based Heuristic: The LLR rescues the illiquid yet solvent nodes in de-

creasing order of outstanding liabilities until the bailout budget is exhausted.

The size of outstanding liabilities is taken as a measure of the potential amount

of payments the node can generate in the future, if rescued. For the decision

epoch t, given st and X t, the liability size of each illiquid yet solvent node i is

computed as
T

Q
τ�t

�1 � r���τ�t�Et �lτi � .
We denote the the bailout strategy by otπ3 and the objective value by zt3 . We

call H t
3�st,X t� the Q-factor approximation obtained using this heuristic.

This method exploits the fact that for each node, the total payment over the

time horizon is a non-decreasing function of the total liabilities over the same

horizon. Such a method performs well if the financial network is heterogeneous,

where heterogeneous means not homogeneous. Consider for example a configura-
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tion consisting of (1) illiquid nodes whose present value of outstanding liabilities

is large, and are expected to perform significantly better in terms of future op-

erating cash inflow, (2) nodes with smaller outstanding liabilities but predicted

to continue performing poorly in future cash inflows. Under this setup, rescuing

the nodes with larger outstanding liabilities can generate larger payment flows

in the network, given that payments are increasing in the amount of outstanding

liabilities and operating cash inflows. Consequently, this method is expected to

perform better than the myopic method.

5.0.3 Rollout Algorithm

We apply the rollout algorithm to improve the performance of the original heuristics.

This yields the suboptimal bailout policy as well as the corresponding clearing pay-

ment sequence. We remark that a similar approach has been followed by Bertsekas

et al. (1997), in the context of a machine maintenance and repair problem. While the

rollout algorithm in Bertsekas et al. (1997) is based on the approximate cost-to-go

function, here it is based on the approximate Q-factor. Denote the suboptimal pol-

icy and corresponding bailout strategy in decision epoch t by π̃t and õt, respectively.

The rollout algorithm may be described as follows. For t � 0, . . . , T � 1

Step 1. Compute the Q-factor approximation, H t
k�st,X t�, for k � 1,2,3.

Step 2. Select the suboptimal policy π̃t associated to the heuristic with the largest

H t
k, along with the corresponding bailout loans, i.e.

π̃t � arg max
k>�1,2,3�

H t
k�st,X t� õt � otπ̃t .

Not restricted to the three heuristics mentioned in the previous section, in general,

the rollout algorithm improves the performance of the original heuristics, i.e.

21



Lemma 5.2. Consider K heuristics used by the rollout algorithm,. Then

E �T�1

Q
τ�0

�1 � r��τzτ�sτ ,oτπ̃τ ,Xτ�	 C E �T�1

Q
τ�0

�1 � r��τzτ�sτ ,oτπk ,Xτ�	 for k > �1, . . . ,K�.

Proof. The proof directly follows from Bertsekas (2005), see their Proposition 3.1.

6 Systemic Risk Analysis

We provide an analysis to assess the systemic risk reduction obtained after controlling

for the optimal bailout policy. To this purpose, we first introduce two measures of

systemic risk in the context of our framework. We then use the approximate dynamic

programming method illustrated in the previous section to analyze these measures

under different network configurations.

6.1 Systemic Risk Measures

The first measure is the residual systemic risk, defined as

RS � E �PT�1
t�0 �1 � r��t �Pi>V lti � zt�st,ot,X t��

PT�1
t�0 �1 � r��tPi>V lti 	 .

which gives the percentage of unrepaid liabilities within the network, after accounting

for optimal bailout policy provided by the lender of last resort. Recall that dT is the

default indicator vector by the end of the time horizon. The second measure is the

residual default rate, defined as

RD �
1

n
E �Q

i>V

dTi 	 ,
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i.e. the percentage of defaulted nodes, after controlling for the optimal bailout loan

policy. Clearly, if the regulator policy is effective, these measures should be small.

6.2 Experimental Setup

We fix the number of network nodes to n � 20, and the time horizon to T � 20.

The time step used in the simulation is ∆t � 1, which results in twenty payment

periods. Liabilities between each pair of nodes are assumed to follow a multi-period

binomial model. The amount of liabilities Lt�∆t
ij , owed by i to j at time t � ∆t,

is given by uLtij with probability Pu and by δLtij with probability Pδ. Here u C 1,

δ B 1, and P �δ 1 � Pu. We also assume that the operating cash inflow of each

node follows a multi-period binomial model. In order to analyze the quality of the

optimal selection policy returned by our algorithm, we consider a scenario where

illiquid assets are large enough that each node is always solvent, hence qualified to

be rescued if illiquid. We consider two network configurations, homogeneous and

heterogeneous. For each configuration, the initial amount of due liabilities from each

node is $500. In the homogeneous case, each node is liable to all others in the

network. In the heterogeneous case, the network is divided into three blocks, one

large block and two small blocks. The large block consists of twelve nodes, all liable

to each other. Each small block consists of four nodes, each of which only liable

to higher indexed nodes in the block. The initial amount of liabilities owed by each

node to his creditors is $500. The parameters u and δ associated to the homogeneous

and heterogeneous configuration are given in Table 1. For both configurations, the

operating cash inflows generated by each node have initial sizes of $200, and then

evolve independently following a binomial model with u � 1.1 and δ � 0.9.

Figure 2 illustrates the initial snapshot for the two network configurations.

Following the definition of Bernoulli distribution, we set P �u 0.5 �

º
0.25 � σ2.
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Figure 2: The left panel shows the homogeneous network at time t � 0. The right
panel shows the heterogeneous network at time t � 0.

Table 1: The left table shows the economic parameters. The right table shows
the liability movement ratios used for the nodes belonging to different subgraphs
following the binomial model at time t

Market interest rate, r 8%
Bailout loan interest rate, rc 0.75%
Liquidation discounted factor, γ 80%

Binomial Homogeneous Heterogeneous Heterogeneous
Movements Large Small

u 1.1 1.1 1 � 0.1~t
δ 0.9 0.9 ��1 � 0.125t�

Clearly, Pu increases when σ increases, thus results in higher expected value for the

total liabilities in the network. This also reflects the fact that higher volatility of

liabilities is commonly associated with higher trading volumes within the network,

thus leading to larger liabilities within the network.

We fix the number of Monte-Carlo runs to 50. We compare the performance of the

base heuristics described in the previous section, and of the the rollout algorithm. For

the latter, in each time time period, each base heuristic is evaluated on one-hundred

Monte-Carlo paths, to approximate the Q-factor. To facilitate a comparison with the

scenario where no mitigation is applied, we also superimpose the No-Bailout curves

to report systemic risk and default rate of the networks under the case when no
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bailout loan is provided.

6.3 Economic Analysis

Our analysis demonstrates that homogeneous are more robust than heterogeneous

networks to systemic events. As it appears from Figure 3, the homogeneous network

requires smaller amount of bailout loans to mitigate systemic risk. For example, to

obtain a 20% level of systemic risk, it is necessary to provide an amount of $30,000

in bailout loans for the homogeneous configuration, versus an amount of $600,000

needed in the heterogeneous case. Notice that this happens, despite the fact that

the total amount of liabilities generated in the homogeneous network amount to

7.8 million, almost twice as large as the 3.7 million amount in the heterogeneous

network. The conclusion is that the homogeneous configuration induces smaller

illiquid amounts over time, and hence it is more robust against default events with

respect to the heterogeneous network.

Figures 3 - 5 also show that default rate behaves similarly to systemic risk. This

implies that the number of defaulted nodes and total payments are also highly corre-

lated in the multi-period model. It further suggests that for homogeneous networks,

greedy-type algorithms rescuing as many nodes as possible in each iteration, can

produce good suboptimal allocation policies to our problem. This happens because

the state of nodes is similar across time. Consequently, the sooner the bailout loan is

provided, the smaller is the amount of unrepaid liabilities generated over time, thus

lowering systemic risk.

Next, we analyze how bailout budget, volatility of liabilities, and correlation

across liabilities, affects the level of systemic risk.
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6.3.1 Impact of Bailout budget

We fix σ � 0.5. We vary the budget from $10,000 to $50,000 in the homogeneous

configuration, and from $400,000 to $600,000 in the heterogeneous one, given that

the total size of network liabilities is higher in the homogeneous configuration. As

expected, Figure 3 is consistent with intuition that systemic risk decreases when

higher bailout loans are available. We remark that it is possible to achieve the same

systemic risk reduction in both configurations, although a much smaller budget is

used by the LLR in the homogeneous case. When the network is heterogeneous, the

rollout algorithm outperforms all other heuristics by a significant amount. When

the configuration is homogeneous the network state over time does not change dra-

matically, hence myopic strategies also tend to offer near optimal bailout policy

allocations.

6.3.2 Impact of Correlation

We assume the liability exposures are pairwise correlated with identical coefficient ρ

as describe next. Denote by Puu the joint probability that liability exposures of i to

j and of k to l simultaneously increase, i.e.

Puu � P�Lt�∆t
ij � uLtij, L

t�∆t
kl � uLtkl� �i, j� ~� �k, l�.

Similarly, we denote by Pδδ, Puδ, and Pδu the joint probability that two node’s liability

exposures move down and in opposite directions. From the definition of Bernoulli

distribution, we have

Puu � P�Lt�∆t
ij � uLtij�P�Lt�∆t

kl � uLtklSLt�∆t
ij � uLtij� � ρPu�1 � Pu� � Pu2 (6.1)
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Figure 3: The left panels show the residual systemic risk and residual default rate
each algorithm derives for the homogeneous network across different budgets. The
right panels show the results for the heterogeneous network.

Similarly, we obtain

Puδ � Pδu � �1 � ρ��1 � Pu�Pu Pδδ � 1 � Puu � 2Puδ

Clearly, as ρ increases, Puu and Pδδ increase while Puδ decreases. This results in

closer co-movement of the node’s liability exposures within the network.

We fix the volatility σ � 0.5. We set B � $30,000 in the homogeneous case, and

B � $500,000 in the heterogeneous case. We vary ρ from 0 to 0.9.
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Figure 4 indicates that, in the absence of mitigation, systemic risk increases with

correlation among liability exposures (the No-bailout curves decrease under both

configurations). This happens because increases in correlation make the liability

structure more homogeneous given that liability exposures are more likely to move

in the same direction. Consequently, this results in smaller systemic risk. The

effect is more significant in the homogeneous configuration, where a 65% reduction

is achieved, against a 45% reduction achieved in the heterogeneous case.
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Figure 4: The left panels show the residual systemic risk and residual default rate
each algorithm derives for the homogeneous network across different correlations.
The right panels show the results for the heterogeneous network.
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6.3.3 Impact of Volatility

We fix B � $5,000 in the homogeneous case, and B � $100,000 in the heterogeneous

case. We then vary the volatility from 0.1 to 0.4. Since Pu is increasing in σ, the

network would result in higher total liabilities as σ increases. To control for that, and

only analyze the impact of larger variations between incoming and outgoing liabilities

across nodes, we choose the initial liability amounts so that the expect total amount

of interbank liabilities across time is the same, regardless of the volatility level.

Figure 5 indicates that higher volatility in liability exposures increase the systemic

risk level. This happens because higher volatility generates larger differences between

incoming and outgoing liabilities, When no bailout loan is provided, the effect is the

strongest, with larger number of nodes of defaulting, and consequently resulting in

the highest systemic risk levels. Bailout loan mitigation alleviates, but not fully

remove this effect. Indeed, the residual systemic risk keeps increasing with volatility.

Such an increase, not only generates higher illiquid amounts for each illiquid node,

but also increases the number of illiquid nodes. The effect is more pronounced

in the homogeneous configuration. As the volatility becomes sufficiently high (for

instance 0.2 in our benchmark case), the network loses most of its homogeneity

and systemic risk increases rises faster. We remark that this mechanism exhibits

similarity with counterparty valuation adjustments, which have been demonstrated

to be very sensitive to volatility exposures, see Capponi (2012) for an illustration,

and identified as the major drivers of the the systemic risk crisis.

6.4 Computational Analysis

We evaluate the performance of each algorithm, and observe the following facts.

(1) Myopic algorithm performs better in homogeneous settings. For heterogeneous
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Figure 5: The left panels show the residual systemic risk and residual default rate
each algorithm derives for the homogeneous network across different volatilities. The
right panels show the results for the heterogeneous network.

networks, the myopic algorithm performs worse than too-big-to-fail and reward-

based algorithm. The last two always rescue the nodes with larger balance sheet

or liability sizes, which have the potential to generate higher payments with

respect to nodes rescued by the myopic algorithm. In homogeneous networks,

the too-big-to-fail and reward-based algorithms no longer have the advantage

we just described due to the similarity of balance sheet structure across nodes.

Consequently, the myopic algorithm outperforms the other two, given that it

maximizes the total payments in each time. This also shows that the systemically
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important nodes are not necessarily the ones with the largest balance sheet size.

(2) Rollout algorithm performs better under both network configurations. Figure 3 –

5 and Table 2 show that the rollout algorithm has always a better systemic risk

mitigation effect with respect to the other three heuristics. It always improves

upon the performance of the other three methods, with the improvement be-

ing more significant in the heterogeneous network. Indeed, for a heterogeneous

network with B � $500K,σ � 0.5, ρ � 0, the rollout algorithm is able to lower

the systemic risk to about half of the systemic risk level achieved by the other

methods.

Table 2: Residual systemic risk in the homogeneous network

Budget 10,000 20,000 30,000 40,000 50,000

Rollout 0.4832 0.2781 0.1749 0.0959 0.0264
Myopic 0.4845 0.2791 0.1755 0.0963 0.0266
Reward 0.5037 0.3188 0.2202 0.1442 0.0613
Too-big-to-fail 0.5035 0.3184 0.2192 0.1437 0.0595

Volatility 0.01 0.1 0.2 0.3 0.4

Rollout 0 0 0.0240 0.2189 0.3967
Myopic 0 0 0.0320 0.2397 0.4180
Reward 0 0.0006 0.0322 0.2400 0.4182
Too-big-to-fail 0 0 0.0245 0.2195 0.3973

Correlation 0 0.1 0.3 0.5 0.7 0.9

Rollout 0.1749 0.0955 0.0655 0.0323 0.0022 0
Myopic 0.1755 0.0956 0.0655 0.0323 0.0022 0
Too-big-to-fail 0.2192 0.1264 0.0872 0.0469 0.0051 0
Reward 0.2202 0.1291 0.0879 0.0471 0.0052 0
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7 Conclusions

We developed a multi-period clearing payment system building on the framework

originally proposed by Eisenberg and Noe (2001). We have modeled the systemic

consequences of a default event both on current and future evolution of the financial

network. Our framework allows the systemic risk to be optimally controlled by a

default-free regulator, under a clearing payment system consistent with standard

laws of bankruptcy. After reformulation as a Markov decision problem, we have

shown that optimal bailout policy and corresponding clearing payment sequence

can be recovered as the solution of a constrained stochastic dynamic programming

problem.

We analyzed the power of our framework in predicting residual systemic risk and

default rate under two interbank network configurations, namely homogeneous and

heterogeneous. We find that the networks with higher correlated and lower volatile

liabilities, or more homogeneous liability structure, are more robust to default events.

Comparisons between the suboptimal bailout policy recommended by our algorithm

and alternative bailout policies suggested by regulators shows that too-big-to-fail or

greedy policies may result in significantly higher levels of systemic risk.
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