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Abstract

The potential impact of interconnected financial institutions on interbank financial systems is
a financial stability concern for central banks and regulators. A number of algorithms/methods
have been developed to extrapolate latent interbank risk exposures. However, most use highly
stylized network models and reconstruction methods with global optimality lending allocation
approaches such as maximizing entropy or minimizing costs. This paper argues that U.S. bank
lending and borrowing decisions are largely suboptimal and performance-driven. We present
an agent-based model to endogenously reconstruct interbank networks based on 6,600 banks’
decision rules and behaviors reflected in quarterly balance sheets. The model formulation re-
produces dynamics similar to those of the 2007-09 financial crisis and shows how bank losses
and failures arise from network contagion and lending market illiquidity. When calibrated to
post-crisis data from 2011-14, the model shows the banking system has reduced its likelihood of
bank failures through network contagion and illiquidity, given a similar stress scenario.
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1 Introduction

Recent experiences since the financial crisis suggest that the existing understanding of systemic

risk may not adequately capture latent fragility and shock propagation. The impact of shocks

or any disturbances in the financial sector cannot be assessed without relying on a systemwide

perspective on how different institutions interact, how system complexities evolve, and how the

endogenous behaviors of different agents converge.

Prior to the 2007-09 crisis, financial regulators placed less emphasis on assessment of systemwide

characteristics of networks and risks within them (Ha laj and Kok (2013)), and instead focused on

microprudential risk of individual institutions. Of particular interest since then has been the topic

of interconnectedness of financial institutions because of the unknown probability of contagion

between institutions. Additionally, though less discussed in the network literature, is endogenous

network formation, where institutions have to decide whether creating a financial relationships is

attractive.

Both these concerns were seen in the U.S. interbank lending market, one of the most immediate

sources of liquidity for banks, during the crisis. Afonso et al. (2011) show that the interbank market

behaved with a heightened concern for counterparty risk that reduced liquidity and increased the

cost of financing for weaker banks. Banks overall were less likely to lend liquid assets to each other.

Large banks, which play a central role in this market, increased their liquidity buffers (Berrospide

(2012)), forcing medium and small banks to look for new sources of liquidity.

As a result of these events, network-based representations of the interbank market have begun to

be studied. Some central banks have even started using network models related to contagion (Bank

of Korea (2012), European Central Bank (2013), Anand et al. (2014), Martinez-Jaramillo et al.

(2014)). Due to the fact that in practice the interbank networks often remain unobserved, several

algorithms/methods have been developed to extrapolate interbank risk exposures and network

structures to consider contagion risks.

Existing methods for interbank network reconstruction and consequential contagion modeling

have two major shortcomings: (1) most models tackle the problem with highly stylized structures

including some agent-based approaches; and (2) the assumption of some type of optimal decisions

in bank lending and borrowing is broadly applied. The reality is that banks are more performance-
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driven, and their performances are individually optimal but are collectively suboptimal (Acharya

(2009)). Banks are autonomous decision makers with various constraints. A performance-driven

agent would respond or adapt to market changes to achieve its performance objectives, which are

dynamic in nature. This characteristic is largely not present in a pure network optimization setting,

and when these networks are used for stress testing, results would likely exhibit significant deviation

from reality.

For example, the two leading methods in reconstructing interbank networks using assets and

liabilities reported in financial balance sheets assume a globally optimal allocation of lending. The

first one, known as the Maximum Entropy (ME) method, effectively assumes that banks diversify

their exposures by spreading their lending and borrowing across all other banks (Upper and Worms

(2004), Upper (2011), Elsinger et al. (2013)). The key concept here is that maximum entropy is

optimal from an information-theoretic perspective, but empirical studies show interbank networks

are typically sparse (Cocco et al. (2009)). The second method is aptly named Minimum Density

(MD), which minimizes the number of links necessary for distributing a given volume of loans on the

interbank market (Anand et al. (2015)). In contrast to the Maximum Entropy method, it is based

on the economic rationale that interbank linkages are costly to maintain. Both Maximum Entropy

and Minimum Density present two extreme cases in backtracking interbank networks. When used

to stress test the system, the Minimum Density method provides lower bound, while the Maximum

Entropy method offers upper bound to the number of linkages (Anand et al. (2015)). The real

network structure lies in between the two.

This paper uses historical financial data from the U.S. Federal Financial Institutions Examina-

tion Council (FFIEC) to build a large scale agent-based model (ABM) to represent all the banks

at a 1:1 scale of the U.S. banking system. Bilateral exposures are represented by different asset

maturities, such as overnight debts (federal funds), short-term and long-term debts. Bank lending

and borrowing behaviors are based on statistics of individual banks and general behavior patterns

from the empirical findings. This framework reconstructs an interbank exposure network using

agent-driven decisions that are then compared with and validated against the existing empirical

findings, as well as other existing interbank network construction algorithms.

The model is additionally validated by calibrating it to the pre-crisis FFIEC data and running

Monte Carlo simulations. The simulations demonstrate that modeled bank failures follow similar
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dynamics and outcomes as those seen in 2007-09. The analysis introduces systemic shocks that

cause a correlated collapse of asset holdings across the system in the ABM to induce system

contagions. Finally, the model is recalibrated with post-crisis banking data, and the simulated

results of running a similar shock are compared to those of the pre-crisis results.

The first contribution this paper makes to the current literature includes introducing a mech-

anism that endogenously forms a financial architecture using individual bank performance objec-

tives derived from balance sheets. This framework examines the network resilience of the financial

architecture to bank defaults and contagion while dynamically allowing the banks to form new

relationships and reform the network.

This paper makes a second contribution by presenting a model for stresstesting the banking

system that incorporates indirect losses from contagion-driven insolvency and illiquidity. The power

of this methodology is demonstrated by examining how the banking system performs before and

after the 2007-09 financial crisis under a shock similar to that of the crisis, and how different

aspects of the shock propagate defaults. It could additionally give regulators a platform to test new

regulations and policies that either target or impose network structure in a dynamic environment,

such as the Federal Reserve’s recent proposal for single-counterparty credit limits (Federal Reserve

System (2016)). As this rule is meant to constrain large counterparty relationships, determining

what the new network equilibrium would look like is important in identifying how the rule would

improve financial stability.

The paper is structured as follows. Section 2 reviews current literature related to systemic

risk and interconnectedness, interbank networks topology, and extrapolation techniques. Section 3

discusses U.S. banking financial data used in this study. Section 4 summarizes the methodology

used to construct the agent model and to incorporate autonomous behaviors of the agents. Section

5 explains the validation of the model. Section 6 presents model experiments and results. Finally

the paper concludes in Section 7 by assessing the results and the methodology’s contributions.

2 Background

This section delves into four key aspects of modeling interconnectedness in the U.S. banking

system: (1) modeling interconnectedness as it relates to systemic risk, (2) the topology of the
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interbank networks for short and longer term lending characterized by previous studies, (3) current

methods and practices for recovering network structure, and (4) ABM as a method for endogenously

determining how networks form under stress.

2.1 Systemic Risk and Endogenous Networks

Among the many factors contributing to the financial crisis of 2007-09, the role of the growing

interconnectedness of the global financial system is perhaps the least well understood (Glasserman

and Young (2015)). Pioneering works by Allen and Gale (2000) and Eisenberg and Noe (2001)

highlighted the importance of financial interconnectedness and systemic risk and the crisis exposed

the fact that regulators and market participants had limited information to examine financial

networks and identify risk channels.

Many models have highlighted how interbank network data could be used to examine the

spread of contagion (Wells (2004); Iori et al. (2006); Elliott et al. (2014); Acemoglu et al. (2015a)).

However, little work has considered how financial networks endogenously form and change as new

market participants enter, defaults occur, or new policies are enacted. The answer to the question

of how to use strategic network formation can be traced to seminal works of Jackson and Wolinsky

(1996) and Bala and Goyal (2000). This literature focuses on how agents trade off the costs and

benefits of creating links with one another and characterizes the set of networks that are formed

in equilibrium. More recent works by Acemoglu et al. (2015b) have looked at how endogenous

network formation can impact systemic risk, and Gofman (2016) has developed these themes by

calibrating network formation based on network features seen in agent trading decisions.

2.2 Interbank Network Topology

The interbank network’s structure is of interest to central banks and regulators concerned

with bank bilateral exposures and the implications they pose in periods of stress. Research so

far has focused on the overnight funding market because of data accessibility. Boss et al. (2004),

Iori and Gabbi (2008), and Roukny et al. (2014) investigated the interbank market in Austria,

Italy, and Germany, respectively, and discovered similar network features of the banking system in

those countries. These features include: (1) sparsity and short average distance among nodes, (2)

heterogeneous degree count among nodes that follows a power law distribution, (3) small clustering,
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and (4) small world properties. Fewer studies have looked at the total network including overnight

transactions, short-term loans, and long-term loans in the aggregate due to the lack of data.

Cont et al. (2013) investigated the Brazilian banking system based on balance sheets with

complete interbank exposures. Their findings suggest that connectivity properties of the total

network are consistent with those of overnight transaction networks. This similarity is due in part

to the preference seen in lending practices between large and small banks. Cocco et al. (2009)

documents that smaller banks, which normally have higher default risk, tend to rely on large banks

when borrowing funds. Large banks prefer to borrow funds with familiar counterparties to reduce

interest payments. Though this may create similar network features between the loan maturity

networks, the combination of both loan types is an important determinant of interbank lending

liquidity (Bargigli et al. (2015)).

2.3 Interbank Network Extrapolation

Interbank networks are seen as fundamental channels for contagion and systemic risk today.

But in practice, most interbank networks remain unobserved because interbank loans are generally

arranged over the counter and data are not centrally collected in most countries. As a result, several

methods have been developed to approximate the network with available data. These methods do

so by estimating networks from balance sheet lending and borrowing. The predominate approach

is the Maximum Entropy method that has a simple risk-sharing mechanism that implicitly assumes

perfect competition, i.e. all banks are equally willing to accept an equal share of risk (Upper and

Worms (2004)). However, interbank networks have been sparse, because interbank activity is based

on relationship banking (Cocco et al. (2009)). Smaller banks are limited by the number of linkages

they can maintain (Craig and Von Peter (2014)), as it is costly to manage a large and diversified

set of lending and borrowing relationships.

As a result, many different algorithms have been used to manage linkage formation by including

optimizing features for different network measures.1 The Basel Committee on Banking Supervision

(2015) compared many of these algorithms and found the Minimum Density (Anand et al. (2015))

to be one of the most accurate estimators for interbank networks, although it has a bias toward

1Alternative methods suggested in the literature include Anand et al. (2015), Baral and Fique (2012), Battiston
et al. (2012), Tarashev et al. (2011), Ha laj and Kok (2013), and Mastrandrea et al. (2014)
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underestimating the total number of linkages.

2.4 Agent-Based Modeling in Interbank Networks

As an alternative to the network theoretic-based approach, ABM offers flexibility and enhances

fidelity to the real data observed. Many attempts have been made to apply this approach to

interbank contagion problems. By its definition, ABM is a simulation framework comprised of

autonomous agents with interacting behaviors, connections between agents, and an exogenous

environment (Macal and North (2010)). In contrast to statistical and mathematical models, ABMs

have advantages in replicating real social phenomena, adaptive agent behaviors, and information

diffusion among agents (Macy and Willer (2002), Gilbert and Terna (2000)). These features provide

an ideal platform for modeling endogenous network formation through behavior-based rules.

ABMs have been used for systemic risk evaluation in the past (Streit and Borenstein (2009),

Bookstaber et al. (2014)). Within the banking system more specifically, ABMs have been applied

on top of network topologies to explore contagion risk among banks (Georg (2013), Ladley (2013)).

In addition, further extension has replicated multi-layered network structures hinging on multiple

types of interbank loans. Kok and Montagna (2013) investigated contagion risk among large EU

banks and discovered nonlinearities in the shock propagation.

3 Data

U.S. national banks, state member banks, insured state nonmember banks, and savings associa-

tions are required to submit quarterly financial reports to the FFIEC known as the Federal Financial

Institutions Examination Council Reports of Condition and Income.2 The balance sheet and in-

come statements disclosed on the form show each bank’s business model and lending-borrowing

practices. These are used to derive the interbank market structure. The data sample used in this

paper covers 14 years, from March 2001 to December 2014, and includes reports from just over

10, 000 active and failed banks.

Figure 1 has bank balance sheet statistics for the sample period. Figure 1a and 1b show assets

and liabilities held by all U.S. banks and by the 10 largest U.S. banks. There is steady growth

2In the case of bank holding companies, the data represents only balance sheet information associated with the
commercial bank part of the company.
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(a) Total Assets of Banks (b) Total Liabilities of Banks

(c) Number of Banks and Bank Failures

Figure 1: Bank Sample Plots: Assets, Liabilities, and Number.

Notes: The top two bar charts show the total assets and liabilities of all banks in the sample and the largest

10 banks for the first quarter of each year. The bottom two line charts plot the numbers of banks and the

number of failed banks in each quarter. Source: Federal Financial Institutions Examination Council Reports

of Condition and Income.

on both sides of the balance sheet with exception of the period after the 2007-09 crisis. During

the crisis, there was an initial increase in total bank balance sheet values, followed by a flattening

during 2010 and 2011, before the positive linear growth trend pre-crisis reemerged.

Figure 1c shows the total number of banks, and the number of banks that failed. In contrast to

an increase in the aggregate balance sheet of the banks, there is a steady decrease in the number of
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banks due to consolidation. By the end of the analysis period in 2014, the total number of banks

had decreased by nearly a third. There is little impact on the trend of this decrease throughout

the crisis. However, the number of bank failures, which occur when a bank is unable to meet its

obligations to depositors and lenders, substantially increased beginning in the third quarter of 2008,

peaked in mid-2010, and slowly decreased through 2014.

3.1 Interbank Lending Markets

Because interbank lending markets fund the most immediate sources of bank liquidity, a source

of concern during the financial crisis, bank regulators are interested in monitoring these markets.

When stress rises in these markets, it can lead to insufficient bank liquidity and inadequate allo-

cation of capital and risk sharing between banks (Afonso et al. (2014)). The FFIEC data show

interbank lending on an overnight, short-term, and long-term basis by the amount of federal funds,

federal securities, and interbank loans each institution has on its balance sheet.

How banks use interbank markets depends on their liquidity needs. For example, Afonso et al.

(2014) show that large banks have a lower liquidity and higher leverage than small banks. Table 1

shows the average percentage of a bank’s balance sheet that each lending and borrowing activity

represents during different three-year periods. Banks on average use the overnight market to lend

and use the short-term market to borrow.

Considering how these markets have changed in terms of bank balance sheets pre-, during- and

post- crisis, there is a noticeable decrease in how important these markets are on both sides of the

balance sheet. Both short-term and long-term lending and borrowing in the post-crisis period are

half of what they were prior to the crisis. Overnight borrowing is one-fourth of its pre-crisis size

and overnight lending has declined marginally.

3.2 Large and Small Banks

The interbank lending market is a mix of two types of banks: small end-user banks that need

to borrow or lend, and large banks that act as intermediaries to the flow of lending and borrowing

needs. Previous research has distinguished these two groups using bank asset sizes (Afonso et al.

(2014)).

Banks are separated into a large bank group or a small bank group, based on total assets on
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Table 1: Interbank Lending and Borrowing as a Percentage of the Balance Sheet

Year
Overnight Short-term Long-term

Asset Liability Asset Liability Asset Liability

Pre-Crisis
2002 5.13 0.53 0.15 1.06 0.11 0.32

2004
(7.19)
4.62

(3.37)
0.60

(1.93)
0.17

(3.19)
1.07

(1.73)
0.11

(3.64)
0.28

2006
(7.30)
4.44

(3.60)
0.79

(2.45)
0.14

(3.28)
1.11

(1.97)
0.09

(3.50)
0.21

(8.16) (4.56) (2.19) (3.36) (1.70) (2.74)

Crisis
2007 5.51 0.61 0.18 1.14 0.08 0.13

2008
(8.96)
5.33

(4.39)
0.69

(2.58)
0.16

(3.12)
1.16

(1.62)
0.09

(1.97)
0.15

2009
(8.42)
3.23

(4.44)
0.45

(2.50)
0.12

(3.12)
1.05

(1.67)
0.10

(2.28)
0.25

(5.63) (3.64) (1.63) (2.74) (1.86) (2.69)

Post-Crisis
2010 2.57 0.28 0.09 0.99 0.09 0.17

2012
(2.13)
2.13

(3.00)
0.14

(1.51)
0.10

(2.64)
0.87

(1.73)
0.09

(2.20)
0.10

2014
(4.75)
1.56

(2.04)
0.16

(1.56)
0.06

(2.45)
0.76

(1.78)
0.09

(1.92)
0.05

(4.09) (1.94) (1.11) (2.17) (1.86) (0.55)

Notes: This table shows the mean and standard deviation (in parentheses) of the percentage that balance
sheet interbank lending and borrowing contribute to assets and liabilities.

Source: Federal Financial Institutions Examination Council Reports of Condition and Income.

their balance sheets over time. First, banks are ranked by assets. The next step calculates the

differences of logarithmic total assets between two adjacent banks in the ranking, as shown in

Figure 2. All banks above a threshold of 0.10, depicted by the red line in Figure 2b, are considered

large. In Figure 2, four banks are above the threshold line.

We use quarterly financial reports from 2001 to 2014 to separate banks into large and small

types. Some banks switch between the two groups in different time periods, but four banks consis-

tently appear in the large bank group: Bank of America, Citibank, J.P. Morgan Chase Banks, and

Wells Fargo Bank.

There is a distinct difference in how the two groups behave in the interbank market. Large

banks borrow and lend more than small banks. In terms of overnight lending, large banks lend
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(a) Log(Asset) of Banks (b) Difference of Log(Asset)

Figure 2: Bank Categorization By Asset Value.

Notes: This figure shows the total U.S. bank asset distributions from March 2001 to December 2014.

Source: Federal Financial Institutions Examination Council Reports of Condition and Income.

1.4 times more than small banks. Large banks also borrow over five times more than small banks,

meaning that large banks prefer to borrow from small banks, which is consistent with the empirical

findings of Cocco et al. (2009). In the short-term market, large banks lend just over six times more

than small banks but do similar amounts of borrowing. In the long-term market, large banks do

eight times more lending and borrowing than their small bank counterparts.

Table 2: Interbank Lending and Borrowing: Large and Small Banks

Type
Overnight Short-term Long-term

Asset Liability Asset Liability Asset Liability

Large
7.2

(13.47)
2.52

(3.29)
0.92

(1.05)
2.09

(2.33)
1.25

(1.93)
1.99

(1.68)

Small
5.33

(7.25)
0.49

(3.37)
0.15

(1.98)
2.09

(3.09)
0.14

(2.08)
0.28

(3.61)

Notes: This table shows the mean and standard deviation of the percentage of the balance sheet interbank
lending and borrowing.

Source: Federal Financial Institutions Examination Council Reports of Condition and Income.
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4 Model

This section presents an ABM approach to simulate the U.S. interbank lending system. The

model is constructed by incorporating bank-level decisions on lending and borrowing based on

individual bank preferences, allowing the inference of interbank networks based on observed bank

lending and borrowing behaviors. The remainder of this section covers how the banks’ balance

sheets and objectives are modeled and is followed by how each bank’s lending and borrowing needs

are matched to endogenously form lending networks.

4.1 Banks

The model considers a single economy, populated by risk-neutral banks that can only lend to

each other. Each bank has a balance sheet made up of assets, A, and liabilities, L, represented

in Table 3. On the assets side, banks make interbank loans that include overnight market, ON l,

short-term, ST l, and long-term, LT l maturities, as well as cash and cash equivalents, C, and other

assets, OA.3 On the liabilities side, banks have interbank loans borrowed in the overnight market,

ON b, short-term, ST b, and long-term, LT b market, as well as equity, E, and other assets, OA.

Table 3: Description of the Bank’s Balance Sheet

Assets, A Liabilities, L

Overnight lending: federal funds, ON l

en
d

in
g

Overnight
ON b

borrowing: federal funds,

b
o
rr

ow
in

g
Short-term lending: federal securities, Short-term borrowing: federal securi-
ST l

In
er

b
an

k
l

ties, ST b

er
b

an
k

Long-term lending: loans due from Long-term borrowing: loans due to
banks, LT l t

banks, LT b t
In

Cash and balance due, C Other liabilities, OL

Other assets, OA Equity, E

Notes: This description of a bank’s balance sheet focuses on major bank lending and borrowing channels,
i.e. overnight, short-term, and long-term markets. The rest of the balance sheet is condensed into cash or
other assets and liabilities. The notations introduced here of the balance sheet will be used throughout this
paper.

Source: Authors’ model.

3Cash equivalents include Federal Reserve bank deposits and deposits held at other banks.
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Bank lend and borrow decisions are based on individual preferences, which are a function of

financial ratios derived from their balance sheets. Because a bank has several different lending

and borrowing channels to select from, it uses a combination of ratios that, when maintained in

unison, keep constant its interbank lending and borrowing preferences for overnight, short-term,

and long-term debts (see Table 4). Additionally a bank uses the equity multiplier, the ratio of its

total assets to its equity, to control its balance sheet for the degree of leverage desired.

Table 4: Bank Balance Sheet Ratio

Equity Multiplier
Ei

Ai

Overnight Lending, Borrowing
ON l

i ,
ON b

i

Ai Li

Short-term Lending, Borrowing
ST l

i ,
ST b

i

Ai Li

Long-term Lending, Borrowing
LT l

i ,
LT b

i

Ai Li

Notes: This table lists all the features of the balance sheet that bank i targets in determining how to
allocate its lending and borrowing demand from period to period.

Source: Authors’ model.

In each period, a bank evaluates its current ratio against its target ratios to determine how

much it needs to lend and/or borrow. For example, if bank i’s current overnight lending-to-asset

ratio is lower than its target, it will want to find a borrower to lend to in the overnight market.

Likewise, if bank i’s current overnight borrowing-to-liability ratio is lower than its target, it will

want to find a lender to borrow from in the overnight market. Once the bank reaches all its targets,

it will no longer want to lend or borrow in any of the three markets.

There are two types of banks in the model, large and small, and they are differentiated in

two ways. First, large and small banks have different balance-sheet characteristics and interbank

lending practices that are important to capture in constructing their balance sheets, as discussed in

Section 3.2.4 Second, large banks are intermediaries for lending and borrowing, which makes them

4We split the data sample across large and small banks to ensure that when we parametrize the models through
sampling the data is drawn from similar bank distributions.
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attractive to banks looking for a correspondent. This will be discussed in the following section.

4.2 Interbank Market Activities

In each period, banks repay debts so they can make new lending and borrowing decisions

that will evolve the interbank system over time. This procedure has four behaviors: 1) interbank

lending-borrowing, 2) debt payments, 3) failed bank defaults, and 4) balance sheet updates.

4.2.1 Bank Lending-Borrowing

If a bank needs to lend or borrow in ON b, LT b, or ST b during a period, it goes through a scoring

system to determine with whom to do this new activity. This procedure is done by assigning two

scores to each bank: a size score, Ssize, and a relationship score, Srelation. The size score is meant

to capture the preference of banks to do business with larger banks with more assets. This is

calculated here as a bank’s assets less existing counterparties’ average assets:

Ssize
i,j (t) = logAj(t) −

∑
k,k=i logAk(t− 1)Ii,k(t− 1)∑

k,k=i Ii,k(t− 1)
,

Ii,k(t) =

{
1, If i and k are have a relationship at period t

0, Otherwise,

6

6
(1)

where Ssize
i,j (t) is the size score of bank j evaluated by bank i in period t, Aj is the total assets of bank

j, and Ii,k(t) is a binary variable for keeping track of previous debt obligations. The relationship

score captures a bank’s tendency to keep existing relationships. In each model period, this score

decreases according to a decaying function and increases if new debt is settled:

Srelation
i,j (t = 0) =

{
logDi,j(0), If i and j have initialized debts

0, Otherwise,

Srelation
i,j (t > 0) =

{
Srelation
i,j (t− 1) + logDi,j(t), If i and j set new debts

(1 − η)Srelation
i,j (t− 1), Otherwise,

(2)

where Srelation
i,j (t) is the relationship score of bank j evaluated by bank i, in period t, Di,j(t) is the

new debt between bank i and bank j in period t, and η is the memory decaying parameter, which

we set to a default value of 0.1. Finally, a bank uses the two scores in combination, Stotal(t), to
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rank from whom it wants to borrow.

Each bank, knowing its borrowing target, first sends one borrowing request at a time to each

large bank in order to obtain its desired funding. If the bank’s borrowing target is not fulfilled by

the large banks, the bank will then send one request at a time to each small bank it has had a

previous lending relationship with, in order of largest to smallest Srelation
i,j (t). Finally if the targeted

amount is still not fulfilled, the borrowing bank then contacts each small bank it has not contacted

(i.e. not had a previous lending relationship with), in order of largest to smallest Ssize(t).5i,j Once

a bank has contacted all potential borrowers, and has not been able to fulfill its target, the bank

may suffer a liquidity default on its balance sheet if it does not have enough equity.

When a bank receives a borrowing request, it must decide two things: 1) whether to provide

new loans to requesting borrowers and 2) how much to lend. Two primary factors affect bank

lending preferences. Each bank with space in its ON l, LT l, or ST l follows a similar scoring system

described in Equation 3 with respect to its potential borrowers. Accordingly, a bank chooses to

lend by going through each request until its lending target is satisfied or there are no more requests

to fill.6

Stotal
j,i (t) = ωSrelation

j,i (t) + (1 − ω)Ssize
j,i (t), (3)

and Stotal
j,i is the score that lender j assigns to borrower i. Stotal

j,i is the weighted average of the

relationship score and size score of bank i. Equal weights are set to these scores (ω = 0.5). However,

a lending bank does not agree to every borrowing request, even if it has the capacity, and uses an

S-shaped function, p(Stotal
j,i ), to assess the chance that lending bank j settles new debts to borrowing

bank i, where

p(Stotal
j,i (t)) =

1

1 + α× exp (β × Stotal
j,i (t))

; (4)

where p(Stotal
j,i ) is the probability that i lends to j, and α and β are two parameters that control

the intercept and slope, respectively. In this function, α is a positive real number. The larger

the number, the lower probability of lending to a bank scoring 0 (see Figure 3a). To present

5During this process banks are selected (at random) to send a request to borrow from next available borrower,
according to this preference algorithm.

6These scores evolve with time as the balance sheets of banks do.
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different preferences of large banks and small banks, values are chosen from the uniform distribution

U(0.3, 0.5) for large banks and from the uniform distribution U(0.9, 1.1) for small banks. This

approach allows more lending from large banks to small banks. β is a negative real number, and

the larger it is the slower the probability moves from 0 to 1 (see Figure 3b). In other words, a larger

β means a tighter lending policy such that fewer borrowers get loans. Default values are chosen for

banks from the uniform distribution U(−1.1,−0.9).

(a) Sigmoid function sensitivity to α (b) Sigmoid function sensitivity to β

Figure 3: Lending Probability Determined by Sigmoid Function.

Source: Authors’ analysis.

A lending bank follows a uniform distribution to determine the fraction it wants to lend from

its available lending limit. The lower value between the one determined by the lending bank and

requested by the borrowing bank is set as the new debt size.

4.2.2 Lending Repayment Rate

Banks make payments on their debts, PON , PST , and PLT , at the beginning of each period and

receive debt payments, RON , RST , and RLT . Given that this paper’s modeling period is based on

quarterly data, the following assumption is made about repayment frequency. As overnight debts

are paid daily, all lending agreements are reset each period. As most short-term loans are made

for less than three months (Sheldon et al. (1998)), the majority of short-term lending is repaid

within one period. A uniform distribution of U(99%, 100%) is used to represent the percentage of

payments to short-term debts. Long-term loans usually are repaid in less than one year, or four
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periods, so 75 percent of outstanding loans continue to exist. This paper uses U(25%, 100%) to

represent the percentage of payments to long-term debts.

4.2.3 Bank Failures and Defaults

A bank may run into a critical condition when it is not able to fulfill borrowing requests for

liquidity needs or there is an exogenous impact on the banking system. The model sets bank failure

conditions for defaults due to insolvency or liquidity. When the equity of bank i is negative, it faces

solvency default (Equation 5). If the bank does not have enough assets to pay its debts at maturity,

it will have a liquidity-driven default (Equation 6).

Ei(t) < 0, (5)

Ci(t) < ONp
i (t) + ST p

i (t) + LT p
i (t), (6)

p p pwhere ON i (t), ST i (t), and LT i (t) are bank i’ payments of overnight borrowing, short-term bor-

rowing, and long-term borrowing on period t.

When bank k fails at time t, it will default on its interbank borrowing. Bank k’s lender i, will

write down the assets and realize loss WD. The write-down percentage is associated with the type

of lending. Overnight lending is not covered, so the full amount of the loan is counted as a loss.

Short-term and long-term loans are collateralized so the lender writes down a percentage from a

uniform distribution and realizes a loss in equity.

WDON (i, t) = ON l
ik(t− 1),

WDST (i, t) = U(0.0, 0.2)ST l
ik(t− 1),

WDLT (i, t) = U(0.0, 0.2)LT l
ik(t− 1),

(7)

whereWDON (i, t), WDST (i, t), WDLT (i, t) are bank i’s total write-downs on period t, andON l
ik(t),

ST l
ik(t), and LT l

ik(t) are outstanding debts from bank k to bank i on period t.
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4.2.4 Balance Sheet Updates

A bank evaluates current interbank lending and borrowing positions, calculates its net income,

and updates its balance sheet at the end of each quarter or period. Activities in the overnight,

short-term, and long-term markets are recorded according to the rules in defined in Table 5, and

new values are updated in each period.

The income recognition process is simplified by estimating net income based on bank equity in

each period. To calculate net income, an empirical distribution Beta(17, 36,−0.1, 0.3) is used for

the return-on-equity ratio (ROE) based on bank-reported data. In each simulation cycle, net income

is derived from returns calculated by multiplying ROE (drawn from the empirical distribution) by

the current equity. Net income will then be recognized as the most liquid assets – cash and balance

due – on the balance sheet. A bank allocates the income according to its target ratios in the next

period.7

With current balance sheet values from the previous period, the new balance sheet entries

are updated for the next period by adding all the interbank lending and borrowing values and

recognizing the net income in the current period.

7As part of the simplification, we skip the direct calculation of the interest earned from interbank lending for two
reasons: a) for each period, income from interbank debts is a very small portion of bank profits, and b) a majority
of the interest earned is captured in the periodic profits and losses through ROE.
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Table 5: Balance Sheet Updates on Interbank Debts

Lending Borrowing Paying Receiving Writing-down

er
t

n
ig

h
ON l +Dl

ON ON b +Db
ON ON b − PON ON l −RON ON l −WDON

O
v C −Dl

ON C +Db
ON C − PON C +RON E −WDON

-t
er

m

ST l +Dl
ST ST b +Db

ST ST b − PST ST l −RST ST l −WDST

S
h

o
rt C −Dl

ST C +Db
ST C − PST C +RST E −WDST

L
o
n

g
-t

er
m

LT l +Dl
LT

C −Dl
LT

LT b +Db
LT

C +Db
LT

LT b − PLT

C − PLT

LT l −RLT

C +RLT

LT l −WDLT

E −WDLT

Notes: This table shows balance sheet value changes from different market activities. Dl
ON , Dl

ST , and Dl
LT

are new overnight, short-term, and long-term lending. Db , Db , and Db
ON ST LT are new overnight, short-term,

and long-term borrowing. PON , PST , PLT are overnight, short-term, and long-term debt payments. RON ,
RST , RLT are payments collected from overnight, short-term, and long-term lending. WDON , WDST , and
WDLT are write-downs of overnight, short-term, and long-term lending.

Source: Authors’ model.

5 Model Validation

Validation exercises confirm that the model produces an interbank market resembling the real

market based on individual bank decisions on lending and borrowing. The model is first validated

based on bank balance sheet ratios and interbank lending network properties by comparing its

results to those empirically observed using data from 2001 to 2006. Second the ABM methodology’s

performance is compared to other algorithmic methods in selecting network linkages and creating

stylized facts. Lastly, the model’s network topology features are compared to those observed in

other papers.

5.1 Bank Balance Sheets Validation

Banks make lending and borrowing decisions based on many different factors, but this study

focuses on two aspects: risk and behavior. Balance sheet information is used to measure bank

decisions. Two ratios are used to indicate risk: the liquidity ratio and the leverage ratio. Another

two ratios are defined to measure the interbank lending and borrowing behaviors. All four ratios

are defined in equations (8, 9, 10, and 11)
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Leverage Ratio =
Ai

Ei
(8)

Liquidity Ratio =
Ci

Ai
(9)

Interbank Lending Ratio =
ONL

i + LTL
i + STL

i

Ai
(10)

Interbank Borrowing Ratio =
ONB

i + LTB
i + STB

i

Li
(11)

Given these measures, the model is first initialized based on 2001 financial data. The distribution

of the four selected ratios is validated according to simulation data of 20 quarters and empirical

data from 2001 to 2006 (see Figure 4). A comparison of the distributions of the four observed versus

simulated ratios shows that from a balance sheet perspective, the simulation closely resembles real

bank lending and borrowing behaviors.

5.2 Comparison to Maximum Entropy and Minimum Density Algorithms

Interbank lending networks are generated based on an ABM that reflects lending and borrowing

behaviors using FFIEC balance sheet data. The results are compared with two established interbank

network reconstruction approaches from previous studies: Maximum Entropy (ME) and Minimum

Density (MD) methods. Both set certain optimization rules inferring interbank exposures from

observable marginals. However, as discussed earlier, the results generated from these two methods

do not resemble the real market’s network properties, and can only serve as lower and upper bounds.

Following this paper’s earlier methodology, repeated simulations are run with parameters based

on 6,600 U.S. banks’ financial data from 2001 to 2006. In each of the 30 simulations, the interbank

network topology is initialized using the ME algorithm and the simulation model until the network

properties stabilize at a steady state, allowing the calculation of the interbank network properties.

The initial bank networks are also constructed using both ME and MD methods, and interbank

properties computed. The three most robust measures of network topology are evaluated, i.e. de-

gree distribution, clustering, and average path of the networks, generated by all three approaches.
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(a) Interbank Lending Ratio (b) Interbank Borrowing Ratio

(c) Leverage Ratio (d) Liquidity Ratio

Figure 4: Bank Categorization Through Asset Value.

Notes: The figure shows the comparison of ratio distribution (histogram) between the real bank financial

data and the simulated results. The leverage ratio and the liquidity ratio are used as measures of bank risk.

Interbank lending and borrowing ratios are used to quantify interbank lending practices.

Source: Federal Financial Institutions Examination Council Reports of Condition and Income; Authors’

model.

Additionally, the power law exponent of the degree distribution is assessed to examine the char-

acteristics of the reconstructed networks. Results show the model sits between the ME and MD

methods (see Table 6).

The degree distribution presents differences of network connections more clearly. In networks

generated by the model, the majority of agents create less than 10 links, and very few agents create

as few as 1 or 2 links. This can be observed from the probability density function (PDF) in Figure

5. On the other hand, the ME method distributes interbank exposures so widely that the degree
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Table 6: Comparison of Network Properties (average of 30 simulations)

Average Clustering Power Average
degree coefficient law path

Maximum Entropy 476.73 0.80 2.31 1.93
Model 14.78 0.36 2.39 2.11
Minimum Density 2.71 0.02 3.14 4.89

Notes: This table shows the network properties generated by the three methods for 6,600 U.S. banks. For
the Maximum Entropy and Minimum Density methods, these properties are generated offline using bank
balance sheets, and the average numbers are presented accordingly. For the ABM, these properties are
based on the average of 30 simulations.

Source: Authors’ calculations.

measure typically is meaningless. The MD method generates comparatively fewer links, which is

evident from Figure 5. However, the average degree generated by MD is at the lower end with a

value of 2.71, while the average degree generated by ME is at the higher end with a value of 476.73.

The clustering coefficient, the propensity of nodes to form cliques, is informative. The local

clustering coefficient averages the probabilities that two neighboring nodes are connected (Jackson

(2008)). The MD method produces a value of 0.02 and gives the appearance that local clustering

cannot be found, meaning the MD method tends to generate star-like networks, while the ME

method seems to be at the other extreme with a high number of links creating a nearly complete

network. That suggests that both ME and MD methods fail to preserve local clustering. Our ABM

produces a reasonable middle ground that is also close to results obtained in a study of the German

interbank network (Anand et al. (2015)).

The average path – the average number of steps along the shortest paths for all possible pairs

of network nodes – measures how efficient borrowers are at finding lenders through the network.

Empirical studies find that the average path in interbank networks is between 2 and 3 in length

(Boss et al. (2004), Bargigli et al. (2015)). The MD method generates a relatively large number

(4.89), while the ME method is lower than the observed empirical range. The ABM here produces

an average of 2.31, which is within the range documented for Austrian and German interbank

networks.

Lastly the power law degree distribution exponent of the networks are generated by the three

methods and a linear regression in a log-log plot of the cumulative distribution is used to obtain the
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(a) PDF Degree Distribution of Banks

(b) CDF Degree Distribution of Banks

Figure 5: Comparison of Degree Distribution.

Notes: This figure displays the degree distribution in both probability density function (PDF) and cumulative

density function (CDF). The degree distribution from the ABM is based on 30 simulations and is represented

by the blue line. In the CDF plot, it sits between the Maximum Entropy and Minimum Density methods.

Source: Authors’ calculations.

power-law exponent (like the ones reported for the degree distribution) for the networks generated

by the three methods. The ME method has a power law exponent of 2.31; the MD method, 3.14;

the agent-based method, 2.19. The ME and agent-based methods produce values consistent with a

scale-free network structure which range between 2 and 3 (Choromanski´ et al. (2013)), while the MD

appears on the high end. However, when additionally examining the logarithm degree distributions,

in Figure 6, we find the ME method produces an interbank network closer to a complete network,
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and does not fit well to a constant power exponent.

Overall, as Anand et al. (2015) pointed out, the true network structure should lie between

the results from the ME and MD methods. This experiment demonstrates the model produces a

reasonable network structure that is well-bounded by the established ME and MD methods.

5.3 Network Properties Validation

A network properties comparison is performed between the simulated overnight lending market

and the U.S. federal funds market.8 Soramäki et al. (2007) evaluated 6,600 banks’ transactions

using 2006 Fedwire data and documented the empirical network structures. Here, 100 simulations

are conducted with the same number of agents (see Table 7) and compared to the Soramäki et al.

(2007) findings.

A comparison of two networks, based on the same set of statistics as in Section 5.2, shows a good

overall match in the three average aggregate statistics. The clustering coefficient shows the weakest

match, suggesting that the model may have a stronger propensity to form lending relationships

between large and small banks than the real market does.

Table 7: U.S. Federal Funds Market Interbank Network Property Comparison

Number of Average Clustering Power
Nodes Degree Coefficient Law

U.S. Federal Funds Market 6,600 15 0.53 2.15
Model (100 simulations) 6,600 14.78 0.36 2.39

Notes: This table lists the key network measures between the real U.S. federal funds market and the
simulation results.

Source: Soramäki et al. (2007); Authors’ calculations.

8This is the only U.S. lending market category that has had an empirical network analysis which the authors are
aware.
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Figure 6: Comparison of Power Law Fit.

Notes: These figures show log-log power law fitting of the degree distribution of the interbank networks

generated by the Maximum Entropy, Agent-based Model, and the Minimum Density methods.

Source: Authors’ calculations.
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6 Model Experiments

This section examines the informativeness of the ABM in replicating the impact of stress. A

stress similar to the 2007-09 financial crisis is applied to bank balance sheets to see how effectively

the model can match the number of the actual number of banks that failed. Post-crisis balance

sheet data are then applied to compare how banks would fair. Lastly, this section examines the

impact of contagion in bank failures brought on through either illiquidity in the interbank lending

markets or insolvency due to write-downs of failed interbank loans.

6.1 The 2007-09 Financial Crisis

The ABM simulates the banking system dynamics and allows for the discovery of potential

contagion of bank failures due to exogenous shocks. We run an experiment to replicate the 2007-09

financial crisis and show a simulated market response. From 2003 to mid-2007, banks increased

their debt burden from rising home prices. When the housing bubble burst, it triggered a domino

effect of bank defaults leading into the 2007-09 financial crisis.

Many stylized shocks have been developed to replicate the financial crisis. This simulation

shocks the real estate lending part of the balance sheet, part of OA to trigger the model’s systemic

shock. To capture the impacts of falling home prices on bank loans, the 2006 ratio of real estate loans

to other assets used. The simulation assigns real estate loans to each bank based on the distribution

of empirical real estate loans. Exogenous shocks are triggered for 29 quarters, corresponding to the

U.S. housing price drop from 2007 Q1 through 2014 Q1. The value of shocks is defined as the House

Price Index (HPI) return.9 At each time period, banks write down their real estate loans according

to housing prices. For example, a 2 percent loss on the HPI triggers a shock of 2 percent in the

model, with every bank recording a 2 percent loss on the housing loans on its balance sheet.10

The housing price shock experiment is applied over 30 model quarters, and each quarter the

number of bank failures is recorded. The experiment is run 20 times and then plotted against real

bank failures from 2007 Q2 to 2014 Q4 reported by the FFIEC (see Figure 7). The results show

a sudden increase in bank failures during the housing price crash and a recovery period after 2011

9 Source: Federal Housing Finance Agency
10We assume for simplicity of the model that banks are forced to reevaluate their real estate loans on a quarterly

basis.
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Figure 7: Validation of Failed Banks in the 2007-09 Financial Crisis.

Notes: This figure shows the simulation of bank contagion during the 2007-09 financial crisis. The blue line

represents the cumulative number of bank failures from 2007 Q2 to 2014 Q4. The red dots represent the

number of failed banks from 30 simulations.

Source: Federal Financial Institutions Examination Council Reports of Condition and Income; Authors’

model.

that closely resembles the actual bank failures.

6.2 Pre-Crisis versus Post-Crisis Interbank Network Comparison

Bank balance sheets have changed since the financial crisis due to new policies and regulations,

but it is unclear how these changes have impacted the robustness and resilience of the interbank

system. Is the post-crisis banking system in better condition than the pre-crisis system? To

answer that question, an experiment examines the impact on the interbank exposures and financial

contagion in the post-crisis era.

The model is calibrated with bank financial data from March 2011 to December 2014. In

addition to changes in interbank lending and borrowing ratios presented in Table 1, other ratios

also shifted after the financial crisis (see Figure 8). In particular, the balance due from the Federal
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Reserve Banks (FRB) is 10 times bigger than in 2001, and the overnight lending ratio has dropped

50 percent since the crisis. Overall, the FRB injected more liquidity into the system, and banks

reduced their balance sheet ratios after the crisis. The latter should lead to a more robust and

resilient interbank network structure. The recalibrated model follows the same bank decision rules

and activity procedures as in the previous experiment, but with post-crisis data.

Figure 8: Average Balance Sheet Ratios (2002-14).

Notes: This figure shows average balance sheet ratios each quarter from 2002 to 2014.

Source: Federal Financial Institutions Examination Council Reports of Condition and Income.

In comparing the network properties between pre-crisis and post-crisis models, Table 8 shows a

number of network topology changes in the overnight market but little in the short-term and long-

term markets. The overnight network remains a scale-free network with similar power law exponents

and the average path length. Both the average degree and clustering coefficient are reduced to one-

third of the pre-crisis level, indicating a much lower number of interbank connections. Overall,

the post-crisis overnight interbank network appears sparse compared to pre-crisis. For the short-

term and long-term debt markets, the networks remain relatively sparse, but clustering coefficients

increase a little, which indicates that although banks tend to have fewer connections, the tendency
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to form tightly knit groups has increased in the post-crisis era. Therefore, the post-crisis network

structure reduces the chance of transmitting shocks to the rest of the system when one bank fails.

However, the contagion may become more concentrated as the result of the sparse connections.

Table 8: Interbank Network Topology

Average
degree

Clustering
coefficient

Power
law

Average
path

Overnight
Pre-Crisis 14.78 0.36 2.39 2.11
Post-Crisis 5.33 0.13 2.45 3.09

Short-term
Pre-Crisis 1.04 0.43 2.44 2.30
Post-Crisis 1.04 0.53 2.29 2.21

Long-term
Pre-Crisis 2.42 0.40 2.14 2.44
Post-Crisis 2.42 0.57 2.15 2.28

Notes: The table presents the two balance sheet driven models of pre- and post-crisis banks using 6,600
representative U.S. banks. The Overnight market is the only one where a substantive difference in the
network structure can be seen by looking at the four network statistics.

Source: Authors’ model.

The shocks’ impact in the post-crisis network showed the number of failed banks dropping from

500 to 370, a 25 percent decrease at a steady state (see Figure 9). This result is consistent with the

network topology analysis that suggests higher stability in a post-crisis network. Both the pre-crisis

and post-crisis bank failure curve share the same inflection point, yet the post-crisis failure slope is

much smaller than the pre-crisis one. It shows that at the beginning of the contagion, the post-crisis

shock transmission rate is higher than the pre-crisis scenario. Toward the end of the contagion, the

post-crisis shock transmission rate is smaller than the pre-crisis scenario.

This shift in the bank failure pattern can be explained by the network topological changes in

the post-crisis era. The post-crisis network has a concentration of exposures onto fewer links. This

means that the greater loss transmitted by a given link is more likely to exceed the capital of the

lending bank and cause its default. At the same time, the concentration effect is balanced by the

fact that the scope of contagion is somewhat limited by the sparsity of the network, A lower number

of linkages also reduces the channels allowing the propagation of losses. At the beginning of the

contagion, the post-crisis network has more bank failures than the pre-crisis network. Toward the
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end of the contagion, the post-crisis network has fewer bank failures than the pre-crisis network.

This is consistent with the observation of Allen and Gale (2000) that complete networks tend

to have less contagion effects early, while incomplete networks generated higher contagion effects

quickly. Overall, the post-crisis network is more resilient to the same types of shocks, the contagion

rate is relatively mild and slower, and bank failures are reduced by 25 percent compared with the

pre-crisis network.

Figure 9: Number of Failed Banks.

Notes: The number of empirically observed failed U.S. banks during the 2007-09 financial crisis period vs.

the average number bank failures obtained from model simulations using pre-crisis and post-crisis balance

sheet data.

Source: Federal Financial Institutions Examination Council Reports of Condition and Income; Authors’

model.

6.3 Interbank Network Contagion

As mentioned earlier, bank failures can be caused by two types of risks in our model: insolvency

risk and illiquidity risk. Real estate values, during 2007-09 are an example of the direct effects of

the shock creating insolvency failures, due to the negative impact real estate had on many bank
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balance sheets. These failures could also trigger contagion-driven failures through the interbank

lending network either through loan write-downs, which could cause further insolvency failures, or

through the loss of funding availability causing illiquidity-driven failures.

The model produces an average number of bank failures of 505, with 465 due to insolvency

and 40 due to illiquidity. These findings are in line with what is seen as the major driver of bank

failures in 2007-09, real estate loans (Lee and Yom (2016)). They suggest that the direct effects of

asset losses were a substantial part of the bank failures, and that there was substantive increase

in demand for interbank borrowing. The imbalance of liquidity supply and demand created by the

crisis causes further losses and creates sizable liquidity risk to the system (see Figure 10).

In comparing pre-crisis and post-crisis scenarios, the latter is found to have a smaller percentage

of losses from illiquidity. This is in part due to the overall decrease in bank failures, seen in the

post-crisis scenario, leaving the interbank lending market in a better condition to continue funding.

Lastly, the model examines the percentage of loss due to insolvency attributable to the direct

shock of real estate losses versus indirect losses from interbank loan write-downs from bank failures.

Figure 11 shows the portion of losses of failed banks in the before-crisis model run. The majority

of failed bank losses are attributable to direct real estate losses, through the HPI shock. However,

in the early quarters of the model runs, the portion of failed bank losses from write-downs is quite

high (10-20 percent) as a share of early failed bank losses. This subsides as banks make new

lending decisions and endogenously rearrange the network, reducing further contagion. Contagion

is a significant cause of bank defaults only in the short term because banks will naturally reassess

lending decisions and endogenously move away from poor performing loans, if given the opportunity.

The post-crisis scenario applied to the model shows near-zero losses from write-downs. That

suggests limited contagion effects would result from the interbank lending market based on the

decrease in overall interbank lending that has happened post-crisis.
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(a) Pre-crisis

(b) Post-crisis

Figure 10: Number of Failed Banks by Liquidity Risk and Solvency Risk

Notes: The figure presents the cumulative number of bank failures we observe in the model under the pre-

crisis and post-crisis scenarios, broken down by liquidity versus solvency risks.

Source: Authors’ model.
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Figure 11: Pre-Crisis Failed Bank Losses From Real Estate, Interbank Loans

Notes: The figure presents the portion of average failed bank losses across time attributable to real estate

losses and interbank loan losses.

Source: Authors’ model.
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7 Conclusion

This paper presents an agent-based approach, using bank balance sheet data, to model the U.S.

interbank lending network. This dynamic model has embedded quarterly financial data reported

to the FFIEC that reflects actual bank behaviors and performance-based decisions to endogenously

reconstruct interbank networks.

We evaluated the model against two well-established interbank network reconstruction methods,

the Maximum Entropy and Minimum Density algorithm approaches, and showed our agent-based

method gives results closer to actual financial network structures. The resemblance to the real

interbank networks is demonstrated through several network measures such as average degree,

clustering coefficient, average path, and power distribution.

The model can show contagion risk while conditionally reformulating the network as bank

failures occur. In one exercise, the model was calibrated to banks’ balance sheets in the pre-crisis

period of 2001-06, then correlated real estate loan loss shocks were added to the system. The

model successfully replicated the market contagion and confirmed bank failure patterns during and

after the 2007-09 crisis. A second exercise calibrated the model with post-crisis data from 2011-

14, examined the network property differences, and compared the contagion effect with pre-crisis

results. We find that in the post-crisis era, banks have less counterparty exposures as shown by a

sparser network interbank structure than before the crisis. Furthermore, the post-crisis era network

is more resilient to correlated asset write-down shocks and has fewer bank failures.

Overall, the methodology presented here is an alternative tool to better understand the con-

tagion impact and network transitions in a bank network. The model provides a vehicle for bank

regulators to stress test the interbank system by examining the severity of outcomes. It also could

allow regulators to test new regulations and policies that either target or impose network structures,

such as the Federal Reserve’s recent proposal for single-counterparty credit limits (Federal Reserve

System (2016)).
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