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Abstract 

We study the e↵ect of dealer exit on prices and quantities in a model of an over-the-counter 

(OTC) market featuring a core-periphery network with bilateral trading costs. The model is 

calibrated using regulatory data on the entire U.S. credit default swap (CDS) market between 

2010-2013. Prices depend crucially on the risk-bearing capacity of core dealers, yet unlike 

standard models featuring a dealer sector, we allow for heterogeneity in dealer risk-bearing 

capacity. This heterogeneity is quantitatively important. Depending on how well dealers share 

risk, the exit of a single dealer can cause credit spreads to rise by 8 to 24%. 
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1 Introduction 

A substantial portion of global financial assets are traded in over-the-counter (OTC) markets, in-

cluding virtually all corporate bonds, sovereign fixed-income products, and swaps (e.g., interest 

rate, currency, and credit). Trade in OTC markets occurs bilaterally between counterparties who 

are connected through a network, one that typically features a handful of central intermediaries 

or dealers. During the 2008 Global Financial Crisis, the distress (and rescue) of individual dealers 

seemingly led to large movements in prices in many OTC markets. Figure 1 provides an illustration 

of price dynamics in the credit default swap (CDS) market around events related to the financial 

soundness of specific dealers. These events raised larger questions about how dealers impact OTC 

market outcomes and whether their individual behavior should be more closely monitored by reg-

ulators. 

We explore these issues using a model of OTC markets that is calibrated to match regulatory 

data on the U.S. CDS market between 2010-2013. There are two types of agents or “traders” in our 

model, dealers and customers. Dealers are located at the center of a core-periphery trading network 

and are connected to everyone, whereas customers sit on the periphery and are connected only to 

dealers. Traders are equally risk averse but di↵er in their initial exposure to aggregate default 

risk. They can adjust their initial exposures using CDS contracts, though bilateral positions are 

subject to trading costs. This cost is a reduced-form way of capturing risk-management position 

limits (Saita 2007), price impact concerns (Malamud and Rostek 2017), or information asymmetries 

(Kyle 1985). In equilibrium, traders simply weigh their desire to hedge (or bear) default risk via 

CDS at the best price against the cost of trading too much with a single trading partner.1 

Our baseline model is calibrated to match average CDS spreads in dealer-dealer trades, dealer-

customer trades, and the distribution of net CDS positions across traders. This allows us to simulate 

how prices and quantities in the CDS market would respond to the exit of a core dealer. When 

a dealer exits, its risk-bearing capacity gets removed from the network and the remaining traders 

then re-trade in the CDS market. We therefore study how the CDS market would reequilibrate if 

the remaining traders cannot adjust any factors that determine their overall aversion to bearing 

credit risk (e.g., their ex-ante exposures). In this sense, our stress tests are designed to approximate 

the medium-run response of the market to dealer exit. 

CDS spreads are very sensitive to dealer exit in the core-periphery model with trading costs. 

The reason is that the observed heterogeneity in dealers’ CDS positions implies large di↵erences 

in their ex-ante risk bearing capacity. Removing the dealer with the largest risk-bearing capacity 

– equivalently, the one who sells the most CDS protection – causes spreads in dealer-dealer and 

customer-dealer trades to rise by 24% and 11%, respectively. When this dealer exits, the risk-

bearing capacity of the core falls dramatically. The remaining dealers have higher implied initial 

risk exposures than the exiting dealer and are therefore less willing to sell CDS protection. In fact, 

the loss of the largest net provider of credit insurance drives the aggregate dealer sector to be a 

1We provide reduced-form evidence of this tradeo↵ in Section 3.2 by showing that traders o↵er price concessions 
to counterparties with whom they have relatively small existing bilateral positions and vice versa. 
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net demander, rather than a net seller, of CDS protection. As a result, CDS spreads rise sharply. 

In contrast, a dealer that is net-neutral in CDS does not contribute to the core’s overall ability to 

bear risk and so its failure has a minimal impact on spreads. 

We extend our baseline model by relaxing the assumption that trading costs are the same for 

all counterparties. In particular, we study how dealer exit impacts CDS spreads when trading 

costs between dealers are smaller than those between dealers and customers. The limiting case in 

which dealer-dealer trades are costless is interesting because it implies that dealers can perfectly 

share risk with each other, as in the seminal work of Du e, Gârleanu, and Pedersen (2005). In 

this case, we show that exit by the largest net seller would still cause CDS spreads to rise by 

8%. The fact that this dealer sells so much CDS protection means that even when interdealer 

trading costs are negligible the implied risk-bearing capacity of this dealer is substantially larger 

than that of the average dealer. As a result, the risk-bearing capacity of the core still declines by 

a material amount upon its exit. The resulting impact on spreads is lower than in our baseline 

model because the heterogeneity in dealer risk-bearing capacity that is implied by observed CDS 

positions is smaller when trading costs between dealers are low.2 However, because dealer-customer 

trading costs prevent customers with high risk-bearing capacity from replacing the lost capacity in 

the core, dealer exit still has a sizable e↵ect even when interdealer trading costs are negligible. 

The extended model also sheds light on how interdealer vs. customer-dealer trading costs 

uniquely impact equilibrium prices and quantities. The cost of trading between dealers does not 

impact their total CDS position as a group, but does alter the distribution of net CDS positions 

within the core. By contrast, trading costs between customers and dealers, along with the relative 

risk-bearing capacity of the two groups, are a central determinant of how much total protection is 

sold by dealers and how spreads di↵er between dealer-dealer and dealer-customer trades on average. 

Together, these properties allow us to estimate dealer-customer trading costs and the di↵erence in 

total risk-bearing capacity between the two groups. To do so, we match the observed di↵erence 

between average spreads in dealer-dealer and dealer-customer trades, as well as the net position of 

the dealer sector. 

Even in the absence of any trading costs, the exit of a dealer could in theory impact CDS spreads 

by changing aggregate risk-bearing capacity. We gauge the strength of this channel by simulating 

dealer failure when the network is complete (or when trading costs are zero) and find almost no 

resulting spread impact, regardless of which dealer we remove. When the network is complete, all 

of the remaining dealers and customers can step in to replace the lost dealer’s trading capacity, 

which is small relative to the market. 

Our sample period of 2010-2013 covers a relatively calm period in U.S. credit markets. However, 

in the last part of the paper, we show broader economic turmoil like the Fall 2008 or March 2020 

could amplify the e↵ects of dealer exit even further. In particular, we show that CDS spreads would 

rise by an additional factor of up to two or three if dealer exit coincides with an increase in risk 

2In our baseline model, heterogeneity in risk-bearing capacity arises from di↵erences in pre-trade risk exposures, 
however we show that our model produces quantitatively similar results with di↵erences in risk aversion. 
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aversion, bilateral trading costs, or both. This magnification result holds true in both our baseline 

model and the extension with lower interdealer trading costs, though in the complete-network case 

there is no interaction between these structural parameters and dealer exit. 

These insights about the e↵ects of dealer exit inform the question of whether regulators should 

actively monitor the activity of individual dealers. Suppose that dealers as a group have no net 

position in CDS. It would be tempting in this case to conclude that individual dealers need not 

be monitored because they collectively act as a pure intermediary. Our results suggest that this 

intuition is incomplete without more data on the distribution of risk-bearing capacity within the 

core. If one dealer sells a large amount of CDS protection to another, then the sector will be net 

neutral, yet our stress tests indicate that the failure of either dealer could still substantially impact 

spreads. This situation resembles what we observe empirically, since a few dealers account for most 

of the CDS protection sold within the core during our sample. 

Another important practical element of our baseline model is that equilibrium prices and quan-

tities can be solved in closed form. Thus, there is transparent mapping between its parameters 

(e.g., trading costs) and two properties that regulators could easily monitor in real time: (i) the 

net CDS position of individual dealers and (ii) price dispersion, defined as the di↵erence between 

CDS spreads in dealer-dealer transactions and dealer-customer transactions. Dealers are net sellers 

of CDS protection during our sample, providing an average of $0.05 of default insurance for each 

dollar of their equity. As mentioned, a handful of dealers account for the bulk of these protection 

sales. In terms of price dispersion, we estimate that CDS spreads in dealer-dealer transactions are 

five percent lower than spreads in dealer-customer transactions. 

Our paper contributes to several strands of research in asset pricing and systemic risk measure-

ment. The specific objective function and endowment structure that we use builds on Atkeson, 

Eisfeldt, and Weill (2015), though there are important di↵erences in our respective approaches. 

Network shape is not relevant in their search-based model because traders are fully connected, 

while the core-periphery structure plays a critical role in our model’s equilibrium.3 In addition, our 

model is closely related to Malamud and Rostek (2017), who explore the implications of risk-sharing 

in a network where traders have quadratic utility. The setup in Malamud and Rostek (2017) is 

quite general and is useful for understanding the theoretical implications of endogenous price im-

pact. In comparison, our model is tailored so that we can more easily estimate the empirical impact 

of dealer removal. 

Spreads in our setup are heavily influenced by the risk-bearing capacity of core dealers. For 

example, we show that the net position of dealers determines whether observed spreads will be 

lower or higher than the Walrasian spread. Intuitively, when the dealer sector becomes a net 

demander of credit insurance, spreads widen considerably and are above the Walsrasian spread. 

The importance of core dealers for market outcomes in our model is similar in spirit to theories 

3The role of networks has been studied in several other related settings, including financial intermediation 
(Farboodi 2017), OTC markets (Golub and Livne 2010, Hendershott, Li, Livdan, and Schürho↵ 2017, Babus and 
Kondor 2018), investor networks (Akerlof and Holden 2016), decentralized exchanges (Malamud and Rostek 2017), 
firm volatility (Herskovic, Kelly, Lustig, and Van Nieuwerburgh 2017), and input-output (Herskovic 2018). 
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of intermediary-based asset pricing (He and Krishnamurthy 2013). Consistent with our approach, 

Haddad and Muir (2018) also show that return predictability from an intermediary-based factor is 

greater for OTC-traded assets like foreign exchange, mortgage-backed securities, and credit default 

swaps compared to exchange traded assets such as equities. 

While our results support the idea that intermediary risk-bearing capacity is a crucial deter-

minant of asset prices, our work highlights some key directions in which these models might be 

extended in future work. First, there is mounting evidence (Siriwardane (2018), Lewis, Longsta↵, 

and Petrasek (2017)) that the financial health of individual dealers can significantly impact asset 

prices. From the perspective of theory, this suggests a benefit to relaxing the standard assumption 

of a representative intermediary. Our model is one such example. We emphasize that heterogeneity 

within the core is important for understanding the consequences of dealer failure, especially when 

dealers do not perfectly share risks with one another. 

Second, our findings also imply that net worth may not accurately measure the risk-bearing 

capacity of dealers, as is commonly assumed in applied work on intermediary-based asset pricing 

(Adrian, Etula, and Muir 2014). In our baseline model, the dealers who sell the most protection 

do so because they start with low initial exposures to aggregate default risk, which in principal 

could be driven by factors unrelated to size or net worth.4 Our model allows for other sources of 

heterogeneity. For example, di↵erences in dealers’ business models, risk-management abilities, or 

risk aversion could all lead to di↵erent pre-trade risk exposures. This observation means that policy 

makers may need to look further than simple measures of financial soundness and connectivity in 

order to assess the systemic importance of a specific dealer for market outcomes. 

The broad motivation for this paper naturally draws on a large body of work that examines 

systemic risk in financial networks (see Allen and Gale (2000), Eisenberg and Noe (2001), Acemoglu, 

Ozdaglar, and Tahbaz-Salehi (2015), and Denbee, Julliard, Li, and Yuan (2014), among many 

others).5 That literature largely focuses on the propagation of a liquidity or default shock through 

a lending network, whereas we study how dealers in a core-periphery trading network could disrupt 

capital market outcomes. Importantly, we show that dealer failure can materially impact CDS 

spreads even without realized corporate defaults or contagion of any kind. 

Another salient feature of our OTC network model is price dispersion, which in our context 

means that dealer-dealer trades occur at lower CDS spreads than customer-dealer trades. The 

prevailing explanation for price dispersion in OTC markets centers around strategic pricing on the 

part of core dealers (Colliard, Foucault, and Ho↵mann (2018), Di Maggio, Kermani, and Song 

(2017)). In our setting, prices are set competitively and dispersion still occurs in equilibrium 

because trading costs prevent dealers and customers from perfectly sharing risk. In equilibrium, 

prices between dealers reflect their willingness to pay for insurance, which may di↵er from customers’ 

willingness to pay and therefore generate price dispersion. Consistent with this theoretical result, 

4Indeed, there is a weak cross-sectional correlation between dealer CDS positions and leverage during our sample. 
5In related work in mathematical finance, Cont and Minca (2016) use publicly available aggregate CDS data and 

a random graph framework to ask how liquidity shocks cascade through derivatives networks. The fixed point they 
study is the number of nodes that fail after a liquidity shock, whereas we focus on equilibrium asset pricing e↵ects. 
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we also document sizable price dispersion in CDS transactions where competition is more likely to 

be high. 

The remainder of the paper is organized as follows. We start by outlining our baseline model 

in Section 2. In Section 3, we discuss our data, provide reduced-form evidence supporting our 

assumption of bilateral execution costs, and calibrate the model. We use the calibrated model to 

study the impact of dealer failure in Section 4 and extend our baseline setup to accommodate lower 

execution costs within the core. Section 5 contains concluding remarks. 

2 Model 

In this section, we lay out the baseline version of the model that we use as the basis for our empirical 

work. One attractive feature of the baseline model is that it can be solved in closed form and is 

thus a parsimonious workhorse with which to develop intuition. The transparent nature of our 

model allows us to easily calibrate its key parameters and to develop intuition for how the OTC 

network impacts market prices and stability. We consider extensions of the baseline model which 

incorporate preference heterogeneity, along with the associated quantitative implications related to 

dealer exit, in Section 4.2. 

2.1 Investor Preferences and the Trading Network 

There are n agents in the economy and one asset with random payo↵ equal to (1 D). D can 

be interpreted as aggregate default risk and it has a mean µ and variance 2 . Agent i is initially 

endowed with an exposure !i to the underlying asset. Agents can trade in the CDS market before 

aggregate default risk is realized, which allows them to hedge or take on additional default risk. 

A CDS contract between agents i and j specifies that agent i promises to pay D to agent j, and 

in exchange, agent j makes a payment of Rij to agent i. Formally, ij is the amount of CDS sold 

by agent i to agent j. The bilateral position ij is positive when agent i sells insurance against 

aggregate default to j, and ij is negative when i purchases insurance from j. The CDS spreads 

(Rij ) and the bilateral positions ( ij ) are determined in equilibrium. 

There is a network of trade connections that determines which agents can trade CDS with each 

other. The network is characterized by an n ⇥ n matrix G of zeros and ones, where each entry (i, j) 

of G is denoted by gij 2 {0, 1}. If agents i and j can trade, then gij = 1, and, if they cannot trade, 

then gij = 0. Furthermore, the network is symmetric, i.e., gij = gji for every i and j, which means 

that if agent i can trade with agent j, then  j can also trade with i. Without loss of generality, we 
6assume that gii = 1 for every i. We treat the trading network G as exogenously determined.7 

Agents have mean-variance preferences over default risk. They must also pay a trading cost 

that increases in the size of their bilateral positions. Overall, their optimization problem is given 

6The equilibrium allocation is identical whether we set gii = 0  or  gii = 1.  
7As we argue in the Internet Appendix, this approach is supported by the fact that new connections in the CDS 

market are rarely formed and existing connections are rarely broken: conditional on no connection in week t, two  
counterparties have a 0.01% chance of making a new connection in the following week. 
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by: 

n nX X↵ 
2 2 max !i(1 µ) +  ij (Rij µ) (!i + zi)

2 
ij (1) 

{ ij }nj=1,zi 2 2 
j=1 j=1 

subject to ij = 0  if  gij = 0, and 

nX 
zi = ij (2) 

j=1 

where zi is agent i’s net position in the CDS market, ↵ > 0 is a risk aversion parameter and > 0 

is the trading cost parameter.The first restriction guarantees that agent i can trade with agent j 

if they are connected. The parameters ↵ and play distinct roles in the model. Risk aversion 

represented by the parameter ↵ measures aversion to total post-trade exposure to the aggregate 

default risk, measured by !i + zi. 

The parameter is new to our model and it captures bilateral trading costs. It represents 

agents’ aversion to hold large bilateral positions as well as their willingness to smooth trades out 

across counterparties. In practice, this desire could arise for several reasons, such as e↵orts to 

minimize information leakage, reduce hold-up problems, ensure the ability to trade in case of a 

counterparty failure, or diversify relationship capital.8 Later, in Section 3.2, we provide empirical 

evidence that institutions in the CDS market do indeed prefer to spread their trades out across 

multiple counterparties, i.e. > 0. 

There are several ways to model agents’ desire to spread out their trades. One advantage of our 

exact functional form is its simplicity—as we will derive below, the model’s equilibrium delivers 

a closed-form mapping between easily observable quantities in the data and the main structural 

parameters. This makes it easier to calibrate the model later in Section 3.4 and to develop intuition 

for the resulting equilibrium. One critique of our functional form might be that it penalizes high-

volume traders, even if they perfectly spread out their trades across the counterparties in their 

network. In the Internet Appendix I.3.1, we develop a variant of the model without this feature. 

While this variant cannot be solved in closed form, its equibrium carries the same intuition of our 

benchmark model. More importantly, both versions deliver similar findings on the impact of dealer 

removal. 

2.2 Equilibrium 

Having defined each individual agent’s optimization problem, let us now define the market clearing 

conditions. In equilibrium, how much exposure agent i wants to sell to agent j has to be equal 

to how much agent j wants to buy from agent i. Hence, bilateral clearing conditions for any two 

8See Balasubramaniam, Gomes, and Lee (2019) for an explicit model of the net benefit of access to multiple 
counterparties in times of market stress. 

6 



� �

�

�

� ��

�

counterparties in our model are given by: 

ij + ji = 0  8i, j = 1, . . . , n.  (3) 

Finally, we assume no transaction costs between counterparties, which means that a payment 

agent i receives from selling to agent j is exactly the amount agent j pays for such contract. In 

addition, there is no strategic pricing in our model, so dealers do not explicitly have monopolist 

or oligopolistic power over customers. While market power is certainly an interesting and realistic 

feature of OTC markets (e.g. Hau, Ho↵mann, Langfield, and Timmer (2018)), we do not model it in 

order to focus on how network frictions impact equilibrium pricing.9 Formally, a no-transaction-cost 

assumption means that prices satisfy the following condition: 

Rij = Rji 8i, j = 1, . . . , n.  (4) 

We solve this model for a competitive equilibrium, in which agents optimize taking prices as 

given, and all markets clear, using the following equilibrium concept. 

Definition. An economy consists of a finite number of agents n, a trading network G, preferences 

described in Equation (1), and pre-trade exposures given by {!i}ni=1
. A competitive equilibrium with 

no transaction costs consists of spot market prices {Rij }i,j=1,...,n and traded quantities { ij }i,j=1,...,n 

such that: (i) agents optimize, taking the network of trading connections and prices as given (Equa-

tion 1); (ii) markets clear (Equation 3); and (iii) there are no transaction costs (Equation 4). 

In this subsection, we fully characterize the equilibrium of the model. If agent i can trade with 

agent j, i.e.,  gij = 1, then agent i’s first-order condition with respect to ij is: 

Rij µ = ij + ẑi , (5) 
| {z } |{z} |{z} 

MB of selling MC of bilateral concentration Shadow cost of risk bearing 

where 

ẑi = (!i + zi)↵� 
2 . (6) 

Equation (5) specifies agent i’s optimal exposure to aggregate default risk as a function of the 

contract premium, Rij µ, along with an additional term, ẑi. We interpret this last term as 

the shadow price of aggregate default risk for agent i, since it is the Lagrange multiplier on the 

constraint given by equation (2). Hence, ẑi is agent i’s willingness to pay to insure against one 

additional unit of exposure to aggregate default.10 

9In the Internet Appendixn I.3.2, we present a version of our theoretical model allowing agents to take into account 
their impact on equilibrium prices, inspired by the more detailed analysis by Malamud and Rostek (2017). We show 
that our analysis holds in an environment with price impact as well. In addition, we address the potential for strategic 
pricing in the empirical estimates we use in our calibration. 

10In equilibrium, agents trade because they have di↵erent pre-trade exposures and want to share risk, consistent 
with risk management considerations. In the Internet Appendix I.3.3, we argue how a model where agents di↵er in 
their beliefs about aggregate default risk µi delivers the same equilbrium allocation. 
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Agent i’s first-order condition equalizes the marginal benefit of selling insurance to its own 

shadow cost of risk bearing combined with the marginal cost associated with bilateral trading 

costs. The risk aversion parameter, ↵, determines how much agent i values net positions through 

the shadow cost of risk bearing, while the trading cost parameter, , determines how much agent i 

values bilateral contracts individually. In other words, ↵ drives total net positions, while defines 

how much agents sell to and buy from each counterparty. Agent i will buy CDS from agent j 

at a higher spread than from agent k in order to avoid an holding a large position with agent k, 

implying that connected agents only exploit price dispersion up to the extent that the benefits from 

attractive spreads outweigh the costs of concentrated bilateral positions. 

By combining the first-order condition in Equation (5) with the counterparty clearing conditions 

in Equation (3) and the no-transaction cost assumption in Equation (4), we can write equilibrium 

prices as a linear combination of counterparties’ shadow prices of insurance: 

ẑi + ẑj
Rij µ = , (7) 
| {z } 2 

contract premium 

for every i and j who can trade, i.e., gij = gji = 1. 

The contract premium, which is the contract price in excess of the expected default in the 

underlining asset, depends on agents’ shadow prices of insurance. As a result, whenever there are 

di↵erences in agents’ shadow prices of insurance, there is price dispersion in the cross section of 

agents in equilibrium, even if agents have identical preferences. 

The CDS premium in Equation (7) is a function of the shadow prices of risk, which are de-

termined in equilibrium. We can use Equations (2), (5), (6), and (7) to solve for equilibrium net 

positions as a linear combination of initial exposures and the net positions of other agents: 

nX 
zi + !i = (1  i) !i + i g̃ij (zj + !j ) 8i = 1, . . . , n,  (8) 

j=1 

Pgij n Ki↵� 2 
where g̃ij = , Ki = j=1 gij , and i = 2 (0, 1). Ki Ki↵� 2+2 

Agent i’s post-trade exposure to aggregate default risk is given by zi + !i. In  equilibrium,  i’s 

post-trade exposure is a convex combination of her pre-trade exposure, i.e. !i, and a network-

weighted average of agent i’s neighbors’ equilibrium post-trade exposures. The weight i defines 

how close agent i is to the average of her neighbors’ post-trade exposures, and it makes a clear 

distinction between risk aversion, ↵, and aversion to bilateral concentration, . Notice that i 

depends on the ratio 2 Ki↵� 2 and parameters ↵ and have opposite e↵ects on i. Risk aversion 

increases agents’ willingness to diversify risk away and makes agent i’s post-trade exposures closer 

to her neighbors, by increasing i. Larger trading costs, however, make agents less willing to 

hold larger positions with their counterparties at the expense of lower risk sharing. As a result, 

decreases i, which leads to lower risk diversification.11 

11The limiting cases of the equilbrium are also instructive. As goes to infinity, we have that i goes to zero, and 
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2.3 Risk-sharing Benchmark: Complete Network 

In this subsection, we consider the model when the trading network is complete, i.e., gij = 1 for 

every i and j. We consider this risk-sharing benchmark because the trading network itself does 

not impose any additional trading frictions. Under the complete network benchmark, the average 

prices in equilibrium would be: 

n nXX1 
RComplete Network ⌘ 

2 Rij = 2↵! + µ, (9) 
n 

i=1 j=1 

P 
where ! = n 

1 n
i=1 !i. 

In Appendix A.1, we provide detailed derivation and we also show that when = 0, there is 

perfect risk sharing and all equilibrium spreads are equal to 2↵!+µ, whenever any two agents are 

connected through a sequence of links. Hence, the complete network economy features an average 

equilibrium price that is the same as the one in an economy with perfect risk sharing. The di↵erence 

between these two cases is that the complete network still has price dispersion in the cross section 

whenever 6= 0 and pre-trade exposures are heterogeneous. 

2.4 Core-Periphery Equilibrium 

We now further characterize the market equilibrium taking into account that the trading network 

is core-periphery. We analyze a core-periphery trading network because it is well-established that 

many OTC trading networks are characterized by a core-periphery structure in which a central set of 

dealers trades with a periphery set of customers (e.g., Li and Schürho↵ (2018), Peltonen, Scheicher, 

and Vuillemey (2014), or Hollifield, Neklyudov, and Spatt (2017)). In the Internet Appendix, we 

confirm that this is the case in the U.S. CDS market as well.12 Appendix A.2 contains the detailed 

derivation of the model under the core-periphery trading network. Formally, we assume that G has 

a core-periphery shape, defined as: 

Definition. A core-periphery trading network consists of two groups of agents, a core and a 

periphery, in which (i) all agents in the core are connected to all other core agents, and all peripheral 

agents, and (ii) peripheral agents are connected to all core agents, and no other peripheral agents. 

Specifically, let nd be the number of members in the core (“dealers”), and nc = n nd the 

number of agents in the periphery (“customers”). We use subscripts d and c to denote dealers 

and customers. Without loss of generality we set agents i = 1, . . . , nd to be core agents. Hence, a 

autarky allocation is achieved in equilibrium (i.e. zi = 0  and  ij = 0  8i, j ). Alternatively, as goes to zero, i goes 
to one, and neighboring agents are able to perfectly share risks. In Appendix A.1, we further discuss these limiting 
cases as well as the model solution at = 0.  

12In Internet Appendix I.2.1, we consider an example with three agents in order to provide intuition and to highlight 
key features of our framework. In addition, in the Internet Appendix I.2.2, we provide a core-periphery example with 
the smallest possible number of agents (five). 
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core-periphery trading network is defined as: 

" # 
0 0 

nd nd nd ncGcore-periphery = , (10) 0 
nc ncnd 

where is a column vector of ones with nd elements and is an nc ⇥ nc identity matrix. The nd nc 

core-periphery G matrix with nd dealers consists of blocks of ones along the top nd rows, and 

left-most nd columns, representing the complete connections of core agents. While the upper right 

square of ones represents connections between dealers, the upper right and lower left squares of ones 

represent the full connections between dealers and customers. Finally, the bottom right identity 

matrix represents that customers are not connected with other customers. 

In the dealer market, the average post-trade exposures of dealers is given by: 

ndX1 
zd + !d ⌘ (zi + !i) =  (1  d)!d + d!. (11) 

nd i=1 

P 2
1 nd n↵�where !d = and = . Equation (11) is derived from Equation (8) applied nd i=1 !i d n↵� 2+2 

to dealers and taking an average across all dealers. The average post-trade exposures of dealers 

are a convex combination of their own average pre-trade exposure (!d) and the average pre-trade 

exposure in the economy (!). 

Since d 2 (0, 1), dealers are net sellers of protection on average, i.e., zd > 0, if, and only if, 

dealers are less exposed to aggregate default risk, i.e., !d < !. Moreover, the average price in the 

dealer market, i.e., Rd, is given by: 

nd ndXX1 
Rd ⌘ 

2 Rij = µ + ↵� 2! (1 d)↵� 
2(! !d). (12) 

nd i=1 j=1 

If dealers are, on average, less exposed to the underlying default risk (!d < !), then prices in the 

dealer market are lower than the complete network benchmark as derived in Equation (9). 

Similarly, in the customer market, the average post-trade exposures of customers are given by: 

zc + !c = c! + (1  c)!c c(1 d)(! !d), (13) 

nd↵� 2 
where c = . We can write the average price in the customer market as follows: nd↵� 2+2 

 
1 ndRc = µ + ↵� 2! ↵� 2(! !d) (1 + c)(1 d) (1 c) , (14) 
2 n nd 

1 n nd nd = Rd + ↵� 2(1 c) 1 + (1  d) (! !d). (15) 
2 nd n nd 

The next proposition compares the average price in the dealer market, the average price in the 

customer market, and the average price in the complete network benchmark. 
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Proposition 1. In the core-periphery model with nd < 
2

1 
, the average pre-trade exposure of dealers n 

is lower than the average exposure in the economy, i.e., ! > !d, if,  and  only if,  

µ + ↵� 2!d < Rd < Rc < RComplete Network, 

where RComplete Network = µ + ↵� 2! as in Equation (9). Alternatively, ! < !d if, and only if, 

µ + ↵� 2!d > Rd > Rc > RComplete Network. 

The proof is in Appendix A.2. Proposition 1 presents two interesting results. First, it shows if 

dealers have a lower-than-average initial exposure to default risk—or equivalently, if dealers are net 

sellers of protection—then spreads in the interdealer market will be lower than those in the dealer-

customer market. This dispersion occurs because dealers start with a lower initial risk exposure, 

hence why they want to sell CDS protection to customers. However, trading costs prevents the two 

groups from perfectly sharing risks, so dealers still have lower total risk exposure even after trading 

in CDS. In other words, dealers will have a lower shadow cost of risk bearing than customers in 

equilibrium. Equation 7 states that the equilibrium price between equals their average shadow cost 

of bearing default risk. Because dealers have a lower shadow cost, Equation 7 therefore implies 

that interdealer spreads will be lower on average than customer-dealer spreads. Importantly, this 

dispersion occurs despite the fact that competition is perfect in our setting. 

The second result builds on the same logic but is a bit more subtle. This result shows that if 

the number of dealers is su ciently small, the average price in both the dealer and the customer 

markets is below the complete network benchmark average price.13 The intuition reflects two 

considerations. First, due to imperfect risk sharing, dealers have less post-trade risk exposure 

than compared to customers. Second, there are a small number of dealers in the economy. From 

Equation (5), the average prices in customer-dealer trades will be equal to the average between 

two components: (i) dealers average shadow cost of insurance and (ii) customers average shadow 

cost of insurance. Hence, if average shadow cost of insurance among dealers is su ciently low, 

then average dealer-customer prices are lower as well. This e↵ect is stronger when there are fewer 

dealers. As a consequence, the average between (i) and (ii) is below the spread that would obtain 

in a complete network. 

2.5 Mapping the Core-Periphery Model to the Data 

Our goal is to map the model’s two structural preference parameters, ↵ and , to the data. This 

turns out to be straightforward in the case of the core-periphery network. For example, by rear-

ranging equations (11), (12), and (14), we can express ↵ as a function of observables: 

h ⇣ ⌘i1 nd↵ = Rd µ + (Rc Rd)2 1 . (16) 
2! n 

13See Gavazza (2016) for a related result. 
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This equation says that aversion to aggregate credit risk ↵ is primarily identified by the level of 

equilibrium spreads in the dealer-dealer (Rd) and customer-dealer market (Rc). 

Next, to calibrate the parameter measuring aversion to bilateral concentration, , we can com-

bine d from Equation (11) with Equations (12) and (14) to obtain: 

✓ ◆ 

= (n nd) 
Rc Rd 

zd 
. (17) 

This equation says that the inference of depends on the number of customers, n nd, the  

customer-dealer spread, Rc Rd, and the average exposure of dealers, zd. Higher price dispersion 

(Rc Rd) coincides with larger values of , as agents are less willing to build up concentrated 

bilateral exposures. Conversely, because dealers are net sellers of protection in the data (zd > 0), 

when they sell more protection it reflects better risk sharing in equilibrium, and hence a lower 

. The comparative statics in Proposition A3 in the Appendix provides further intuition for the 

mapping between and ↵ and observable data. To summarize, in the case of the core-periphery 

network, ↵ is mainly identified from the level of credit spreads, while is mainly identified by the 

dispersion in spreads. 

Furthermore, in Appendix A.2, we show that we can use the net position of each dealer to infer 

their pre-trade exposures to aggregate default. The average net position of dealers also allows us 

to infer the average net position of customers and then compute the implied average pre-trade 

exposures for customers as well.14 

3 Empirical Analysis 

In the first part of this section, we provide reduced-form evidence that traders do indeed prefer to 

smooth their trades across counterparties in the CDS market. This evidence supports our modeling 

of preferences in the preceding section ( > 0). We then measure two key properties of the 

CDS market that are necessary to calibrate the core-periphery network model. Specifically, when 

the network is core-periphery, we showed in Section 2.5 that we can infer the model’s structural 

parameters based on: (i) the net CDS position of dealers and (ii) the di↵erence between CDS 

spreads in dealer-dealer transactions and dealer-customer transactions. As we show below, dealers 

are on average net sellers of credit protection in the CDS market and dealer-dealer transactions 

typically occur at lower CDS spreads than dealer-customer transactions. 

3.1 Data Description 

Before preceding to our main analysis, we start with a basic description of the data used throughout 

the remainder of the paper. Our primary data on CDS transactions and positions come from 

Deposit Trust and Clearing Corporation (DTCC), which provides the data to the U.S. Treasury 

Department’s O ce of Financial Research (OFR) under a license agreement. The data are derived 

14See Equations (A8), (A10), (A11), and (A16) in  Appendix  A.2. 
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from DTCC’s Trade Information Warehouse and include CDS transactions and positions reported 

to DTCC. Transactions represent flows in CDS, and positions represent stocks. DTCC converts 

transactions to open positions before delivering both to the OFR. Positions data are updated at 

the end of each week. DTCC data have been used previously by Oehmke and Zawadowski (2016), 

Siriwardane (2018) and Du, Gadgil, Brody, and Vega (2017). 

For both transactions and positions, we observe complete information on the identities of the 

counterparties in the trade, pricing terms, size, and all contract details. When working with 

transactions, we follow industry practice and infer CDS spreads based on the the International 

Swaps and Derivatives Association standard pricing model. DTCC provides the OFR with data on 

transactions or positions that meet at least one of two conditions: (i) the underlying firm covered 

by the swap is U.S. based or (ii) at least one of the counterparties in the swap is U.S. registered. 

In addition, DTCC CDS data include all North American index swap transactions and positions 

(i.e. the index family is “CDX.NA.”). The data therefore capture most of the CDS market for 

U.S. firms.15 This is the key di↵erence between DTCC data from the OFR vs. from the Federal 

Reserve Banks; the network coverage from the OFR is more comprehensive in the sense that it 

covers more than just entities regulated by the Fed. This is important as large hedge funds are 

important customers in the CDS market. 

We focus on data from January 1, 2010 through December 31, 2013, when central clearing of 

single-name contracts was rare.16 In our data, we do not observe the ultimate counterparty for 

contracts that are centrally cleared. For example, a centrally cleared trade between Hedge Fund A 

and Dealer B will appear in our data as a trade between Hedge Fund A and the central clearing 

party, plus another (unlinked) trade between the central clearing party and Dealer B. This feature 

of the data matters only when we estimate the di↵erence between inter-dealer prices and customer-

dealer prices, as we must observe the ultimate counterparty type. For this reason, when analyzing 

CDS spreads, we use only single-name transactions on U.S. firms from 2010 to 2013, a time period 

that pre-dates central clearing of single-name but not index contracts. By contrast, we use all 

trades when we estimate total net bilateral exposures and credit positions. 

It is important to keep in mind that our model applies whenever building bilateral positions is 

costly. While central clearing should mitigate costs related to counterparty risk, it should have less 

of an impact on costs associated with information leakage or other hold-up problems. To the extent 

that these other costs are large, the main insights of our model should therefore remain applicable 

in a world with central clearing, though this is certainly an interesting question for future work. 

Moreover, a large portion of the interest rate and FX swaps markets are not centrally cleared, and 

our model can be easily modified to study these other settings. 

Our subsequent analysis also requires us to designate which of the members of the network 

are dealers and which are customers. In Appendix C, we use a minimum-distance algorithm for 

15We refer to the underlying company whose default is covered by a CDS contract as the “firm” or “underlying 
firm”. The underlying firm is also often referred to as the reference entity or “name” in the swap. 

16Central clearing of single-name contracts was not prevalent until 2014. See https://www.theice.com/article/cds-
growth?utm source=Insights&utm medium=tile. 
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dealer classification. This algorithm generates a counterparty network with 14 dealers. In many 

applications, we also use DTCC’s classification of dealers as a robustness check.17 

3.2 Do agents prefer to spread out their trades across counterparties? 

A key assumption in our model from Section 2 is that institutions prefer to spread their trades out 

across multiple counterparties (i.e., > 0). There are several reasons why traders may wish to 

spread trades across counterparties, including risk-management requirements (e.g., position limits) 

or the desire to conceal private information. Regardless of the precise micro-foundation, assuming 

that institutions face some form of bilateral trading costs is critical for generating limited risk 

sharing and price dispersion when the trading network is incomplete, as it is in practice. Using 

bilateral positions and individual transactions, we now test whether the assumption of > 0 is  

supported empirically. In the Internet Appendix, we also formally prove that our testing approach 

is valid inside of our model. 

3.2.1 Measuring Bilateral Exposures 

We begin by constructing a measure of bilateral CDS exposure between two counterparties, i and 

j, at time t. At any given point in time, i and j may have several outstanding CDS contracts 

with each other that cover di↵erent firms and maturities. We therefore aggregate i and j’s bilateral 

exposures by representing each individual CDS contract in terms of its exposure to aggregate credit 

risk. This approach to aggregation also accords with our model, where default risk is defined as 

exposure to a single aggregate risk factor. We provide a detailed account of our methodology in 

the Internet Appendix, though we briefly describe the key elements now. Specifically, we proceed 

in three steps. First, we define the aggregate credit risk factor. Second, we compute each bilateral 

position’s exposure to this aggregate credit risk factor. Finally, we aggregate positions simply by 

summing the computed exposures from Step 2. 

Step 1: Defining an Aggregate Credit Risk Factor On each date t, we define our aggregate 

credit risk factor as the cross-sectional equal-weighted average of all five-year CDS spreads for 

U.S. firms in the Markit Ltd. database. We have separately confirmed that this index is a close 

approximation to the first principal component of credit spreads across all maturities (i.e. a level 

factor). However, our simpler index is much better at dealing with missing data, which can be an 

issue for firms with lower volumes of CDS trading. Figure 2 shows that our aggregate credit risk 

factor evolves as one might expect, peaking at nearly 1000 basis points during the 2007-09 financial 

crisis. Our factor is over 90 percent correlated with both the 5-year CDX investment grade and 

high yield indices. The average of our index is a little over 200 basis points, so it is between the 

investment grade and high yield indices in terms of average credit spread. 

17DTCC also classifies traders based on its list of registered dealer members. In single-name transaction data, 
DTCC’s set of dealers is responsible for nearly 86 percent of gross volume. The 14 counterparties who we label as a 
dealer are responsible for about 83 percent. 
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Step 2: Measuring the Exposure of a Single Contract to Aggregate Credit Risk Next, 

we compute the exposure of an arbitrary CDS position p to our aggregate credit risk factor. On 

date t, suppose that the position is written on firm f and has m remaining years till maturity. We 

first assign each position to a “maturity bucket” b based on its maturity m as follows: b = 1 for 

maturities of less than 2 years, b = 3 for maturities between 2 and 4 years, b = 5 for maturities 

between 4 and 6 years, and b = 7 for all maturities over 6 years. 

Next, for each position p, we match it to the Markit CDS spread database based on the under-

lying firm f and maturity bucket b. Markit provides constant maturity CDS spreads for maturities 

ranging from 6 months all the way to 10 years. We match each position’s maturity bucket b to the 

closest constant maturity spread in Markit. For instance, if we observe a position on Ford Motor 

Co. that has a maturity bucket b = 3, we obtain Ford’s history of three-year CDS spreads up to 

date t from Markit.18 Next, we compute the position’s underlying beta with respect to changes in 

our aggregate credit risk factor via the following rolling regression: 

#CDSf,b,s = ↵ + p,t ⇥ #CDS Indexs + " f,b,s, s  2 [t 2 years, t] 

where CDS Indexs is our aggregate credit risk factor on date s. The regression is run using weekly 

data over a rolling window of two years. The position’s beta p,t gives us a gauge of how sensitive 

the underlying CDS spread of the position is to movements in this index. 

We compute p,t for every position contained in our database sourced from DTCC. Importantly, 

we account for both index and single name CDS positions. Selling protection on an index is 

equivalent to selling protection on the individual firms that comprise the index. This distinction is 

particularly important in the CDS market because index positions are nearly half of the net notional 

outstanding for the entire CDS market during our sample (Siriwardane (2018)). To account for this 

fact, we follow Siriwardane (2018) and disaggregate CDS indices into their individual constituents 

and then combine these “disaggregated” positions with any pure single name positions. We then 

estimate p,t for every position and date in this disaggregated data. The Internet Appendix provides 

more details on how we compute ’s. 

Step 3: Aggregation To compute a position’s overall sensitivity to aggregate credit risk, we 

simply multiply the estimated p,t by the notional value Notionalp,t of the position. Formally, 

we define Ep,t ⌘ p,t ⇥ Notionalp,t as the position’s exposure to aggregate credit risk. In some 

applications, we instead define Ep,t by multiplying p,t by what is referred to in practice as a 

position’s “DV01”. DV01 refers to how much the market value of the position changes in response 

to a one-basis point move in the credit spread of firm f – it is similar to the concept of “delta” 

in options markets. Thus, scaling p,t by DV01 measures how much the position will change in 

market value for a one-basis point change in the aggregate credit risk factor.19 

Having defined a position’s exposure to aggregate credit risk, Ep,t, aggregation is straightfor-

18We also match positions to Markit using the documentation clause and underlying currency of the position. 
19We describe the computation of and calculation of sensitivity to DV01 in the Internet Appendix. 
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ward. For example, define Si,j,t as the set of positions where i is a seller to j, and Bi,j,t as the 

set of positions where i is a buyer from j, both as of time t. We define the net and gross notional 

exposures to aggregate credit risk between counterparty i and j as follows: 

X X 
Neti,j,t ⌘ Ep,t Ep,t 

p2Si,j,t X 
p2Bi,j,t X 

Grossi,j,t ⌘ Ep,t + Ep,t. 
p2Si,j,t p2Bi,j,t 

By construction, positive values of Neti,j,t mean that i is a net seller of CDS protection on aggregate 

credit risk to j. 

3.2.2 A Measure of Bilateral Concentration 

From i’s perspective, j is a concentrated counterparty if most of i’s gross-notional exposure occurs 

with j. Thus, a natural measure of bilateral concentration is: 

Grossi,j,t 
i,j,t ⌘ X . 

Grossi,k,t 
k 

P 
Intuitively, i,j,t 2 [0, 1] and i,j,t = 1. In the extreme case, if all of i’s positions are with j,j 

then i,j,t = 1. 

Table 1 provides some basic summary statistics of i,j,t, broken out by whether i is a dealer 

or not. The median customer spreads its trades somewhat equally across trading partners. Based 

on the actual degree distribution, an equally-weighted benchmark would predict a  of 7% for the 

median customer, while we observe a  of about 9%. There are of course some customers that have 

more concentrated exposures on average, with the 75th percentile customer trading about 16% of its 

gross exposure with a single counterparty. Through the lens of the model, this skewness could arise 

due to the underlying distribution of !’s and the fact that some customers have less connections 

than others. Because dealers are inherently more connected than customers, they naturally face 

more counterparties and so their average bilateral concentration is somewhat smaller at 2%. 

3.2.3 A Measure of Bilateral Price Concessions 

Armed with a measure of concentration, we now work through a stylized example of how we measure 

the price concession that counterparty i gives to j in week t. Suppose that the CDS market consists 

of contracts for only one firm and one maturity. Define Si,t as the minimum CDS spread paid by 
¯i in transactions where i bought protection in week t. Similarly, Si,t is defined as the maximum 

CDS spread received by i in transactions where i sold protection in week t. Define  Sk,i,j,t as the 

CDS spread in trade k between i and j in week t. A natural way to define how much i concedes in 
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price to j on trade k is then: 

8 

PriceConcessionk,i,j,t = 
<Spreadk,i,j,t Si,t 

: ̄Si,t Spreadk,i,j,t 

if i buys from j 

if i sells to j 

Naturally, if i purchases protection from j at a high spread relative to other trades where i bought 

protection, then i is conceding more in price to j than to its other counterparties. And, if i 

sells protection to j at a low spread relative to other trades where i sold protection, then i is 

also conceding in price. We aggregate our measure of price concession across all of the trades 

between i and j in week t in two di↵erent ways. First, we take an equal-weighted average of 

PriceConcessionk,i,j,t across the trades k between the two counterparties. We call this metric 

PriceConcessionEW Second, we take a notional-weighted average across their trades, where the i,j,t . 

weights are defined by the notional in each trade. We call this metric PriceConcessionNW  
i,j,t . 

While the preceding example focused on defining our measure of price concession when there 

are CDS traded on only one firm and one maturity, the logic of our approach generalizes in a 

straightforward way to account for trades on di↵erent firms and of di↵erent maturities by averaging 

over these dimensions as well. Table 1 provides some basic summary statistics of price concession 

(PriceConcession), again broken out by whether i is a dealer or not. Here, it is readily apparent 

that there is substantial variation in how much traders concede in price to their counterparties. 

Our model assumes that part of this variation is driven by di↵erences in bilateral concentration. 

3.2.4 Results 

We explore the relationship between price concessions and concentration using a panel regression: 

SjPriceConcessioni,j,t = ⇥ i,j,t 1 + " i,j,t (18) i,t + 

Sjwhere is a fixed e↵ect based on whether i is a net seller or net buyer to j in week t. Thus,  i,t 

in the regression is identified from variation within the set of counterparties to whom i either sells, 

or buys, protection. 

In the Internet Appendix, we show within the model that > 0 if and only if < 0 in regression 

(18). The intuition for this result is simple: If i already has a highly concentrated position with 

j coming into week t, then  i will concede less in price in any trades that occur with j during the 

week. Another advantage of our approach to testing if > 0 is that it does not depend on any 

assumptions on the shape of the network. However, as we also show in the Internet Appendix, a 

limitation of this test is that it only identifies the sign of , not its magnitude. We leverage the 

core-periphery structure of the network to pin down the magnitude of in subsequent sections. 

Table 2 contains the results from running several variants of regression (18). In column (1), 

we use PriceConcessionEW as our measure of price concession. The estimated in this case i,j,t 

is -5.39 and we can reject the null hypothesis that it is equal to zero with 95% confidence. The 

negative coe cient implies that traders concede less in price when facing counterparties with whom 
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they have large pre-existing exposures. The magnitude of the point estimate indicates that a one-

standard deviation increase in bilateral concentration () is associated with about 0.8 basis point 

less in price concessions. As a point of reference, the average of PriceConcessionEW is 3.4 basis i,j,t 

points. Note that if traders with a relationship have a high i,j,t 1 on average, any price concessions 

to favored counterparties would cut against finding a negative coe cient. 

In column (2), we run the regression for the subset of the data where i is a dealer, which 

sheds some light on whether dealers are also averse to concentrated bilateral concentration. The 

estimated is once again negative and measured with statistical precision, implying that dealers 

charge their counterparties more when they have concentrated pre-existing positions with them. In 

terms of magnitudes, the point estimates in column (2) are comparable to column (1) because, as 

shown in Table 1, i,j,t is less volatile for dealers than non-dealers. 

Columns (3) and (4) contain the results using PriceConcessionNW  
i,j,t , which puts more weight 

on price concessions that occur on large trades. We again observe a similar pattern in that larger 

bilateral concentration is associated with lower price concession. In columns (5)-(8), we repeat the 

analysis using a di↵erent approach to constructing i,j,t 1. We redefine a position p’s exposure to 

aggregate credit risk based on its DV01, which as previously discussed provides a sense of how much 

the position will change in market value if our aggregate credit risk factor increases by 1 basis point. 

We then aggregate positions in the same way as before to arrive at i,j,t 1. Intuitively,  when  i,j,t 1 

is defined in this manner it measures how much of i’s potential margin payments go to or come 

from j (see both Section 3.2.1 and the Internet Appendix for more details). As columns (5)-(8) 

show, the negative relationship between bilateral price concessions and concentration is robust to 

this alternative approach to construction of . 

A natural objection to this analysis is that dealers may have market power over some coun-

terparties, particularly those with whom they have large exposures. While this mechanism could 

explain why dealers concede less in price to more concentrated counterparties, it would also predict 

that on average dealers concede less in price than non-dealers. However, this view is not supported 

by the simple summary statistics in Table 1. Overall then, the evidence in Table 2 is consistent 

with the idea that CDS traders prefer to spread their trades out across multiple counterparties. In 

the model, this is equivalent to assuming that > 0. 

3.3 Dealer Exposures and Dealer-Dealer versus Dealer-Customer Spreads 

With support for our model’s key assumptions in hand, we now turn to a more careful calibration. 

As demonstrated in Section 2.5, mapping the model to the data is straightforward when the CDS 

network is core-periphery, as it is in practice. In this case, there is a closed-form relationship 

between the model’s structural parameters and two easily observable objects in the data: (i) the 

net CDS position of dealers and (ii) the average di↵erence between CDS spreads in dealer-dealer 

transactions and dealer-customer transactions. Our goal in this subsection is to estimate both. 
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3.3.1 The Net CDS Position of Dealers 

In Section 3.2.1, we denoted the net amount of CDS protection that i has sold to j on date t by 

Neti,j,t. Recall that Neti,j,t is positive if i is a net seller to j of CDS protection on aggregate credit 

risk. Summing this metric across all j yields a measure of i’s net overall exposure to aggregate 

credit risk: 

X 
Neti,t ⌘ Neti,j,t. (19) 

j 

To define the net exposure of dealers, we first compute Neti,t for each of the 14 dealers in our 

sample. In the model, net exposure is defined as fraction of total wealth, so we then scale each 

dealer’s net CDS exposure by its market capitalization: 

Neti,t 
zi,t ⌘ . (20) 

MktCapi,t 

We compute MktCapi,t using the end-of-week market capitalizations of each dealer, though we 

obtain similar results if use within-week averages or moving averages.20 Here, we use zi,t to denote 

this scaled-exposure measure to match the notation used in the model. 

A key quantity for the mapping between the model and the data is the cross-sectional average 
P 

exposure of dealers, z̄d,t = nd 
1 

i2D zi,t, where  nd = 14 is the number of dealers and D is the set 

of dealers. Table 5 indicates that the average z̄d,t is about 0.045 across all dates in our sample. 

One way to interpret this number is as follows: on average, dealers sell $0.045 of net notional CDS 

protection on the aggregate credit risk factor for each dollar of their equity. 

In the Internet Appendix, we explore an alternative way of defining dealer exposure by comput-

ing how the market value of each dealer’s CDS portfolio responds to movements in our aggregate 

credit risk factor. As previously mentioned, this is often referred to as a portfolio DV01 in practice. 

By this metric, U.S. dealers lose money on their CDS positions if the factor increases, indicating 

that they are net sellers of protection on the index to their customers. These patterns are also 

consistent with dealer behavior in U.K. markets (Morrison, Vasios, Wilson, and Zikes 2018). 

Within the core set of dealers, net selling of CDS protection is itself very concentrated. To 

visualize this fact, Figure 3 plots the distribution of zi within the dealer sector for our sample 

period. The first thing to notice is that much of the mass is concentrated around zero, meaning 

many intermediaries have roughly zero net exposure (Atkeson, Eisfeldt, and Weill 2015). Still, the 

highly concentrated nature of net credit provision is clear from the plot, as the right tail shows 

that a handful of dealers have substantial positive net positions, indicating that they are large net 

sellers. The data in Figure 3 are a key input into our quantitative analysis, and to our knowledge the 

empirical distribution of dealers’ net exposures is new to the literature. We explore the implications 

20 Market capitalization data are not available for most buyside customers, such as pension funds. This is not an 
issue in our baseline model because its calibration only requires us to measure the CDS exposure of dealers (who are 
all listed) relative to their equity. 

19 



� �

�

�

of this extreme skewness for systemic risk measurement in Section 4. 

3.3.2 CDS Spreads: Dealer-Dealer versus Dealer-Customer Trades 

We estimate the average spread di↵erence between customer-dealer and dealer-dealer trades using 

all single name transactions on U.S. firms from 2010 through 2013, excluding those with CDS 

spreads greater than 1000 bps. We further focus on transactions where the tier of debt in the 

contract is senior unsecured, and the so-called “doc-clause” that determines CDS trigger events is 

XR (no restructuring), the most commonly used clause. In addition, we match each transaction in 

our sample to an associated 5-year spread in the Markit database and a 5-year expected default 

frequency from Moody’s, both based on the date and underlying firm of the contract.21 We winsorize 

both the transaction spreads and Markit spreads at their five percent tails, but have confirmed that 

our main conclusions are robust to alternative methods for dealing with outliers. Table 3 displays 

some simple summary statistics on our transaction panel. The average default probability and loss-

given-default are 0.65% and 60.6%, respecively. These statistics will be inputs to our calibration 

in Section 3.4. 

We then run the following panel regression on this sample of transactions: 

Spreadk,f,t = FEs  +  ✓ ⇥ 1k,t(Customer-Dealer) + 
(21) 

1 ⇥ MarkitSpreadf,t + 2 ⇥ log (Notionalk,t) +  " k,f,t 

where FEs denote a series of fixed e↵ects that we describe below. We use the subscript k to index 

each transaction. As before, f denotes the underlying firm in transaction k and t denotes the date 

of the trade. 1k,t(Customer-Dealer) is an indicator variable for whether transaction k is between a 

customer and a dealer. The coe cient ✓ therefore estimates the average di↵erence between spreads 
¯ ¯in the customer-dealer market versus the dealer-dealer market, which we denote by Rc Rd. 

With a large enough sample, we could estimate ✓ based on spread variation within trades on 

the same firm, date, and maturity. Unfortunately, our data does not a↵ord us enough power 

to implement this strategy. Instead, we estimate ✓ based on variation within a ratings class, 

maturity bucket, and week. Within a week, there will certainly be variation in spreads that is 

not fully captured by ratings or maturity. We account for this source of variation by controlling 

for each firm’s daily 5-year CDS spread as reported by Markit. Similarly, the firm fixed e↵ect in 

the regression accounts for time-invariant di↵erences in Spread across firms, which would bias our 

estimation if customer-dealer trades are somehow concentrated in a given name. Finally, we include 

the notional amount of trade k to account for any size e↵ects on spreads. 

Table 4 presents the results from running regression (21) on various subsamples of our data. 

Columns (1)-(3) of the table all use our definition of dealers based on the algorithm in Appendix C. 

Column (1) of the table runs the regression for our full sample and provides our baseline estimate 

of ✓ = 6.14 bps. The point estimate is measured precisely in a statistical sense and implies that, on 

21Markit reports composite CDS spreads based on quotes from dealers and actual transactions. For firms that do 
not have a match in Moody’s, we use the average EDF for the set of firms with the same rating during that week. 
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average, customer-dealer trades occur at 6.14 bps higher than dealer-dealer trades. In column (2), 

we find that ✓ = 6.40 bps in the subsample of trades with a maturity between four and six years, 

which tend to be the most liquid segment of the CDS market. The similarities between the estimates 

in columns (1) and (2) also suggest that spread di↵erences in the interdealer and dealer-customer 

markets are not driven by any maturity e↵ects.22 In terms of economic magnitude, 6.14 bps is a 

large amount of price dispersion considering that the average level of spreads in our transaction is 

133 bps. We provide additional context for the magnitude of ✓ in the Internet Appendix and when 

we study dealer removal in Section 4. 

Market Power A central motivation behind our model in Section 2 is to understand how network 

frictions – the combination of a sparse network and aversion to bilateral concentration – interact 

with price dispersion in equilibrium. However, in reality there are certainly other mechanisms 

that could generate a gap between CDS spreads in dealer-dealer and dealer-customer trades. One 

natural candidate is market power: if dealers have market power over their customers, then they 

might sell CDS at higher spreads to customers relative to other dealers. 

In column (3) of Table 4, we attempt to strip out the potential impact of market power on 

our estimate of ✓ by running regression (21) on a subset of transactions in which prices are more 

plausibly competitive. To do so, we filter our transaction panel to include only dealer-dealer trades 

and trades between dealers and large customers, where large customers are defined as those whose 

share of gross volume is in the top 10% for our sample period. Further, we require that the Markit 

depth for the firms in the panel is at least eight. Markit depth is a data field provided by Markit 

and gives an indication of how many dealers provide quotes on a given firm and date. The cuto↵ of 

eight was chosen because it is the top 10% of Markit depth for our sample of trades. The fact that 

many dealers are providing quotes to large customers supports the idea that dealers are unlikely 

to possess monopolistic pricing power in this subset of trades. The estimate of ✓ = 5.12 bps that 

emerges from this regression is not markedly lower than our estimate from column (1), indicating 

that a sizable portion of our baseline estimate of ✓ = 6.14 bps is due to forces that are distinct 

from strategic pricing. Indeed, a crude decomposition suggests that about 17% (= 1 5.12/6.14) is 

attributable to market power. Still, to ensure that strategic pricing does not influence our results, 

we take a conservative approach and use ✓ = 5.12 when we calibrate the model in Section 3.4. 

Additional Robustness The remaining columns in Table 4 display the results when using 

DTCC’s definition of dealers, as opposed to our definition based on the model-implied minimum-

distance algorithm discussed in Appendix C. In this case, the point estimates on the dealer-dealer 

dummy are quite consistent with the ones we obtain when using our custom dealer definition. 

Thus, our choice of dealers is largely unimportant when estimating di↵erences in dealer-dealer 

versus dealer-customer pricing. 

22For example, our estimate of ✓ would be biased if dealer-customer activity correlates with movements in a 
firm’s term structure that are orthogonal to: (i) common term structure movements within a ratings class; and (ii) 
movements in that firm’s own 5-year Markit CDS spread. This is not likely and is also not the case empirically. 
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3.4 Calibration 

Armed with estimates for the net position of dealers and the spread between dealer-dealer and 

dealer-customer spreads, we are now in a position to infer the model’s two structural risk aversion 

parameters using Equations (16) and (17). Table 5 presents the data estimates we use for our 

calibration, along with the resulting parameter values. We set µ = 0.39% and = 4.87% based on 

our estimates of loss-given-default and the probability of default from Section 3.3.2. 23 Our estimates 

of Rd = 133 bps and Rc Rd = 5.12 basis points also come from the analysis in that section. To 

be conservative about the amount of price dispersion which results from network frictions alone, 

we use the estimate which is based only on dealer-dealer trades and trades between dealers and 

large customers, where large customers are defined as those whose share of gross volume is in the 

top 10% for our sample period (see Table 4). We set the number of dealers nd = 14 and the total 

number of counterparties in the CDS market to n = 723, the latter of which is based on our sample 

of transactions. The only variable on the right-hand side of Equation (16) that we do not observe is 

!, which is the economy-wide exposure to the underlying default risk. We assume that, on average, 

agents have one unit of exposure to default risk by normalizing ! to one. This leads to an estimated 

aversion to aggregate default risk of ↵ = 4.37.24 

Next, to calibrate the parameter measuring aversion to bilateral concentration, , we combine 

our estimates of price dispersion Rc Rd with the net position of dealers, zd = 0.045. Table 5 shows 

that this suggests = 7.98. In the Internet Appendix, we show that in the calibrated equilibrium 

of our baseline model this implies average trading costs of 0.04bps, which is about one twentieth of 

the size of observed average bid-ask spreads of 50-100bps in normal times post-crisis.25 

3.5 How Much Do Network Frictions Impact Prices? 

Using our calibrated model, we now quantify the impact that the incomplete network has on 

equilibrium prices. A natural way to do so is to compute equilibrium prices if the network were 

instead complete, meaning all agents are connected. Rearranging Equation (16) yields the complete 

network benchmark price as a function of observables: 

RComplete Network = ↵� 2! + µ = Rd + (Rc 

⇣ 
Rd)2 1 

⌘ nd . 
n 

(22) 

Importantly, Equation (22) allows us to infer what the complete network benchmark price would 

be based solely on observed prices and the number of counterparties in the network. Based on the 

parameters in Table 5, we infer that the average CDS spread would be RComplete Network = 143 bps 

if the CDS trading network were complete. 

We can then use the implied RComplete Network to quantify the size of network frictions in the 

market. From Table 5, we see that in the core-periphery network customer-dealer trades occur 

23For a probability of default of p = 0.0065 and a loss-given-default of L = 0.6060, µ = Lp = 0.0039 is the expected 
loss rate and 2 = L2 p(1 p) = 0.0024 is its variance. 

24We show that our main results hold for other values of !̄ in the Internet Appendix. 
25See Adrian, Fleming, Shachar, and Vogt (2017). 
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at spread of about Rc = 138.12 bps. Thus, credit spreads in the customer-dealer market are 

about 3.4% lower than they would be if the network were complete. Intuitively, spreads in trades 

between dealers and customers reflect the average post-trade exposures of dealers and customers, 

but are tilted towards dealers’ marginal cost of risk bearing because of their centeral role as OTC 

intermediaries. Since, empirically, dealers are net sellers of credit protection (indicating a higher 

capacity to bear credit risk than that of customers), spreads are depressed downward from the 

perfect risk-sharing benchmark. Moreover, in equilibrium, these lower prices reflect the fact that 

customers must be incentivized to purchase protection from a concentrated set of dealers. 

Similarly, we estimate average dealer-dealer spreads in the core-periphery network to be Rd = 

133 bps, nearly 7% lower than they would be if the network were complete. Again, in our model, 

the empirical fact that dealers are net sellers of credit protection in equilibrium implies that they 

start with less ex-ante exposure to aggregate credit risk than customers. However, aversion to 

concentrated exposures prevents dealers from selling as much protection as they would like because 

all agents trade o↵ the costs of concentrated bilateral exposures against the benefits of default 

insurance (and explointing price dispersion). As a result, the model suggests that the post-trade 

exposure of dealers to aggregate credit risk remains less than that of customers, i.e. that there is 

imperfect risk sharing. In turn, dealers pay lower spreads when purchasing credit protection from 

other dealers in equilibrium because, as a group, their lower ex-ante exposure results in a higher 

risk-bearing capacity and a lower shadow cost of risk bearing. 

More broadly, the fact that CDS spreads in both the interdealer and customer-dealer markets 

are lower than the complete network benchmark reflects worse risk sharing in equilibrium, and a 

tilt toward dealers’ (who are net sellers of CDS) lower marginal costs of risk bearing. The lower 

premiums can be interpreted as compensation for concentrated bilateral exposures – absent these 

costs, agents would compete away any price dispersion. 

These results provide further evidence that small trading costs, on the order of 5% of average 

bid-ask spreads, combined with the core-periphery network, can have large e↵ects. In addition to 

driving price dispersion Rc Rd of 5.12 bps, network frictions lead to customer prices that are 

4.88 bps lower, and dealer prices that are 10bps lower than in the complete network benchmark. 

In the next section, we build on the results in Proposition 1 and use our calibrated model to show 

that the direction of the price distortion depends crucially on the shadow cost of risk bearing in 

the dealer core relative to the customer periphery. If the dealer sector’s ability to bear aggregate 

default risk falls below that of the customer sector, perhaps due to dealer exit, then prices are 

distorted upward. 

4 Dealer Removal  

Core-periphery networks are often thought to be susceptible to systemic risk. For example, in many 

accounts of the 2008 financial crisis, the failure of Lehman Brothers caused dislocations in several 

OTC markets as traders were forced to replace Lehman as a counterparty. Indeed, CDS spreads 

23 



uniformly rose immediately after Lehman filed for bankruptcy on September 15, 2008.26 Motivated 

by the general concern about concentrated dealer markets, as well as the dramatic events in OTC 

markets in 2008, we now use the calibrated model to assess how the CDS market would respond to 

the failure of a central dealer in the network. 

Specifically, we remove one dealer from the core holding fixed all other model parameters, 

including each agent’s pre-trade exposure to credit risk. We further assume that the removed 

dealer’s initial endowment of credit risk exposure (!) is not reallocated to the remaining dealers 

after it exits. This implies that the post-dealer-removal risk-bearing capacity of the dealer sector, 

and overall market, is determined by the remaining traders’ risk-bearing capacities, as determined 

by their initial exposures to credit risk. We then allow all remaining agents in the model to re-

trade in the CDS market and study the resulting new equilibrium. Our stress test thus assesses 

how markets would respond if an exiting dealer’s CDS positions needed to be absorbed by the 

remaining market participants. 

It is easy to imagine how such a situation could arise in practice. For example, suppose that a 

dealer is short credit risk, for example from sales of structured credit products, and that it o↵sets 

that short exposure with a long credit exposure from selling CDS. Now imagine that this dealer 

fails, perhaps due to a shock that starts outside of corporate credit markets (e.g. in residential 

mortgage markets). In a frictionless world, another dealer could potentially absorb all of the failed 

dealer’s cash and derivatives positions without taking on substantial additional risk. In reality, 

reallocation in markets for standardized derivatives contracts may occur much faster than markets 

for more heterogenous cash assets such as structured products, loans, or bonds. Consequently, the 

failed dealer’s initial short credit position (i.e., their ! and hence their risk-bearing capacity) would 

be temporarily removed from the CDS market as it re-equilibrates. This medium-run scenario is 

exactly what our stress test is designed to simulate. 

4.1 Dealer Failure in the Baseline Model 

A salient feature of Figure 3 is that the sale of CDS protection is highly concentrated. A few key 

institutions within the dealer sector contribute substantially to the total credit insurance provided 

by the dealer sector. Building o↵ of this fact, we first use our model to simulate the removal of the 

largest net-selling dealer and summarize the resulting equilibrium in Table 6. In the table, under 

each scenario, we report the average dealer-dealer price Rd, dealer-customer price Rc, and the net 

CDS position of the remaining dealers zd. In addition, we report the resulting spread under each 

removal scenario if the network were complete, as opposed to core-periphery. As a benchmark, 

column (1) of the table shows the same statistics in the baseline model. 

In our baseline calibration, removing the largest net-selling dealer would cause spreads in the 

dealer-dealer market to rise approximately 24% from 133 to 164.31 basis points. The increase in 

26While some of those price movements were undoubtedly driven by news about aggregate default risk, the fact 
that the CDS-Bond basis also rose suggests that Lehman’s failure had an impact on CDS spreads that was distinct 
from pure default risk considerations. 
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spreads occurs despite the fact that there is no realized default, no contagion, and agents can trade 

to reallocate risk after the dealer fails. To better understand the mechanism driving this result, 

we can approximate the price-impact in the dealer-dealer market by combining Equations (11) and 

(12) as follows: 

(1 d)↵� 2 

#Rd ⇡� #zd, (23) 
d 

where the approximation comes from the fact that we are ignoring the small e↵ect that reducing 

the number of dealers has on d and !. Equation (23) says that the impact of dealer-removal on the 

inter-dealer market is negatively and linearly related to the change in the net position of the dealer 

sector. When the largest net seller exits, so to does its capacity to absorb credit risk via CDS (its 

low !i and resulting high risk-bearing capacity). Consequently, without the largest net seller, the 

overall dealer sector reduces the amount of CDS protection it sells (i.e. #zd < 0), thereby causing 

dealer-dealer spreads to rise. In fact, Figure 3 indicates that most dealers have a low capacity to 

absorb credit risk via CDS and are therefore net buyers of protection. This means that removing 

the largest net seller strongly impacts zd. Column (2) of Table 6 shows that the impact is large 

enough that the dealer sector overall switches from being a net seller of CDS protection to being a 

net buyer of credit insurance. 

Equation (23) also highlights how the size of trading cotst a↵ects the quantitative impact of 

dealer removal in the our baseline model. To see why, recall from Section 2.4 that d approaches 

one as approaches zero. In this limiting case, removing a dealer would have a smaller impact on 

the level of spreads, regardless of its impact on dealer-sector-level risk-bearing capacity, because 

risk sharing between dealers and customers improves as declines. As declines customers play 

a more important role in risk sharing and the dealer sector becomes relatively less important for 

pricing credit risk. Conversely, if is large and the network is core-periphery, the level of spreads 

in the economy is more sensitive to the risk-bearing capacity of the core because the core plays a 

larger role in market-wide risk-bearing capacity. 

Heterogeneity in risk-bearing capacity !i across dealers plays a very important role in our model. 

Even without frictions, spreads could in principle react to the failure of a key dealer because of the 

resulting change in aggregate risk bearing capacity. We measure the strength of this channel by 

simulating the failure of the largest net-selling dealer when the network is complete. The last row 

of column (2) shows that spreads are minimally impacted in this case. The reason is that the failed 

dealer contributes very little to aggregate risk-bearing capacity, which in the complete network 

(or no trading cost) case is the relevant state variable for prices. The key di↵erence between the 

complete network/no trading cost model and our model is that trading frictions between the dealer 

and customer sectors, and lack of connectivity among customers, implies that the risk-bearing 

capacity of the core, vs. the aggregate, drives the pricing of risk. And, individual dealers can 

meaningfully contribute to the dealer sector’s ability to bear risk. Thus, dealer heterogeneity plays 

a crucial role in our OTC setting due to trading frictions between dealers and customers, combined 
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with the incomplete network. We elaborate on this below when we extend our model to consider a 

frictionless inter-dealer market. 

We further characterize the role of dealer heterogeneity by removing dealers who are drawn 

from various points in the empirical distribution of net CDS positions (see Figure 3). The resulting 

spread impact is reported in columns (3)-(5) of Table 6. Column (3) presents results for removing 

a dealer at the 90th percentile of the zd distribution. Removing this dealer leads to an increase in 

spreads of about 5 bps in the dealer-dealer sector. The e↵ect is modest because this dealer does 

not sell very much CDS protection and is therefore a small portion of the core’s total CDS supply. 

Column (4) indicates that a similar outcome occurs when removing a dealer who is essentially 

net-neutral in its CDS positions and thus functions more like a true intermediary. Next, in column 

(5), we remove the dealer who is the largest net buyer of protection. Removing this dealer leads 

to lower average spreads in both dealer and customer markets. As can be seen from Equation 

(23), this occurs because removing a large buyer of protection from the dealer sector increases the 

available risk-bearing capacity of the remaining dealers. 

Dealer removal also has an impact on price dispersion, Rd Rc, in our model. Column (2) of 

Table 6 shows that when we remove the largest net seller from the core, dealer-customer spreads 

increase by 11%, compared to 24% for dealer-dealer spreads. As a result, dealer-customer spreads 

are now lower than those in the inter-dealer market. This reversal reflects the fact that after remov-

ing the largest net seller, the remaining dealers become net buyers of protection from customers. 

In other words, the remaining dealers have less ability to bear credit risk than customers and in 

equilibrium will pay a higher premium for protection. The e↵ect can be seen directly by combining 

Equations (11) and (14): 

 
1 n nd nd zdRc = Rd + ↵� 2(1 c) 1 + (1  d) . (24) 
2 nnd nd d 

As shown in Proposition 1, when the customer becomes a net insurance provider to the dealer 

sector (z̄d < 0) – as it does when we remove the largest net seller – spreads in the inter-dealer 

market exceed those in the dealer-customer market. 

In summary, our stress tests show that the removal of an OTC intermediary can have a sizable 

impact on equilibrium outcomes, even when there is no contagion or other knock-on e↵ects from 

dealer exit. The reason is simple: when customer connectivity is limited to dealers and building 

bilateral positions is costly, prices depend heavily on the risk-bearing capacity of core dealers. This 

aspect of our model accords with research that emphasizes the impact of the aggregate dealer sector 

on asset prices (He and Krishnamurthy (2013)).27 Relative to that literature, however, our analysis 

suggests that the financial soundness and net positions of dealers as a sector is not su cient for 

understanding their potential impact on markets. Due to the widely varying roles of dealers, as net 

demanders or suppliers of credit insurance, individual dealers’ presence or absence can push prices 

27There are other channels, such as information revelation (Babus and Kondor (2018), Glode and Opp (2016)), or 
price impact Malamud and Rostek (2017), through which dealers could impact pricing. We have abstracted away 
from these mechanisms in order to focus on how and when dealer risk-bearing capacity impacts market outcomes. 
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in di↵erent directions. 

To see why, recall the thought experiment discussed at the outset of the paper: should regulators 

monitor and collect data on the activity of individual OTC dealers? Our model suggests there is 

value in doing so because heterogeneity within the core is critical for predicting the impact of dealer 

failure on markets. The argument for regulators to monitor intermediaries as a group would be 

stronger if each was net neutral in CDS, though this is not the case empirically. 

Our findings also imply that the risk-bearing capacity of dealers may not be fully captured by 

their net worth, as is usually assumed in the intermediary-based asset pricing literature (Adrian, 

Etula, and Muir 2014). Dealers in our model sell protection if they start with low exposures 

to aggregate credit risk. Di↵erences across dealers in initial risk exposures could be driven by 

factors unrelated to size or net worth, such as heterogeneity in their cash asset (non-derivative) 

business lines. In particular, dealers that sell structured products inherit a short credit exposure 

from that business, while dealers with large bond portfolios enter the derivatives market with 

a long credit position.28 This observation highlights why data on dealer-level derivative and non-

derivative positions can be useful for measuring the systemic importance of dealers in OTC markets. 

In addition, we show below that heterogeneity in risk aversion can also lead to heterogeneity 

in dealer risk-bearing capacity per unit of net worth. The fact that business-induced ex-ante 

exposures and/or heterogeneity in risk aversion or risk-management capabilities may play a part in 

determining dealer risk-bearing capacity suggests that refinements to the simple equity-weighted 

measures of intermediary net worth used in asset pricing may improve their empirical performance. 

Sensitivity to estimates In our model, the impact of dealer exit on markets depends heavily 

on the magnitude of trading costs, . As discussed in Section 3.4, the estimate of that we use in 

our baseline dealer-removal analysis is based on the amount of observed price dispersion (Rd Rc) 

that is observed between dealers and customers in the top 10% of the trading volume distribution. 

We focused on this subset of transactions as a way to minimize the impact of imperfect competition 

on our estimates. For robustness, in Figure 4, we plot the impact of removing the largest dealer 

against the amount of price dispersion attributable solely to network frictions. In the plot, lower 

values of price dispersion implicitly correspond to lower values of in our calibration and hence 

a smaller impact of removing the largest net seller. The figure reveals that even small network 

frictions can still amplify shocks to the risk-bearing capacity of the core. For example, even 

if only half (roughly 2.5 basis points) of the observed 5.12 bps of price dispersion in the data is 

attributable to network frictions, removing the largest net-seller would still increase the level of 

spreads by about 15 basis points, or over 10%. 

28Cross-sectional variation in zi is largely unexplained by dealer leverage (book assets-to-market equity) during our 
sample. This can be seen by running a panel regression of zi on a time fixed e↵ect and dealer leverage, which yields 
a low within-R2 and a statistically insignificant slope coe cient. 
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4.2 Preference Heterogeneity and Dealer Failure 

The baseline model used thus far has two main sources of heterogeneity: position in the network 

(i.e. core vs periphery) and initial exposure to aggregate default risk. This formulation of the model 

is useful because it can be solved in closed-form, which allows us to transparently fit key elements 

of the data and characterize when and why the failure of a dealer can impact prices. Thus, this 

baseline provides a workhorse for quantitative applications in OTC markets. In this subsection, 

we consider a few extensions of the baseline model that allow for heterogeneity in two other key 

parameters, risk aversion and bilateral trading costs. We then study how these extensions impact 

the pricing e↵ects of dealer exit. 

4.2.1 Risk Aversion versus Initial Endowments 

In Appendix B.1, we extend the baseline model by allowing both risk aversion ↵ and initial endow-

ments ! to vary across agents. That is, each agent now solves the following portfolio optimization 

problem: 

n nX X↵i 2 2 2 max !i(1 µ) +  ij (Rij µ) (!i + zi) (25) ij . { ij }nj=1,zi 2 2 
j=1 j=1 

Within this general setup, we show an equivalence between a model with heterogeneous ↵ and 

one with heterogeneous !. Specifically, for a fixed initial endowment !i = !, there is a distribution 

of ↵i that can match any observed set of dealer-dealer prices, dealer-customer prices, and net CDS 

positions zi. 29 Conversely, for any fixed ↵i = ↵, there is a distribution of !i that can do the 

same.30 We leverage this latter property when calibrating our baseline model. More generally, the 

equivalence result implies that the model with fully heterogeneous ↵ and ! is not fully identified by 

our data on CDS pricing, positions, and transactions. Intuitively, this is because we only observe 

CDS positions, and a trader who purchases large amounts of CDS protection could do so because 

of hedging motives, risk aversion, or both. 

The fact that ↵ and ! are not separably identifiable with our data does not mean the distinction 

between risk aversion and initial default exposure is not economically meaningful. To see why, 

imagine that a regulator is trying to determine whether a set of dealers is likely to fail or to become 

impaired in the event of default. Further suppose that agents di↵er in risk aversion but have the 

same initial exposure to default risk. In this case, dealers who sell a large amount of protection are 

29 In order to fully calibrate the heterogeneous risk aversion model, we must also make also make an assumption 
about the distribution of net worth in the customer sector. This is because zi in the model is expressed as i’s net 
notional CDS position per dollar of net worth, which is di cult to measure for customers. We therefore make the 
simplifying assumption that each customer’s net worth is proportional to the size of its net notional position. For 
instance, if one customer sells twice as much protection as another, we assume it has twice the net worth. In principle, 
a regulator with enough data could simply assess the size of each customer’s balance sheet to handle this measurement 
issue more carefully. 

30Formally, Proposition A4 in Appendix B.1 shows that we can use either risk aversion or pre-trade exposure 
heterogeneity to match net positions of agents. To match prices, we calibrate the average risk aversion and the 
trading cost parameters. 
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fairly vulnerable because they are taking on net default risk by selling CDS protection to agents 

with high risk aversion. On the other hand, if agents di↵er only in their initial exposure to default 

risk, then dealers who sell large amounts of protection may not be so vulnerable because they are 

using the CDS market for hedging purposes – that is, they are short corporate credit risk in other 

parts of their portfolio and use the CDS market to achieve a more neutral position. 

Importantly, the empirical distinction between ↵ and ! is less relevant for us because we are 

not trying to predict which dealers are vulnerable to realized default. Instead, we ask a related, 

yet conceptually di↵erent question: how would OTC markets react if a dealer were to fail? Our 

analysis suggests the answer depends mainly on whether the exiting dealer contributes positively 

or negatively to the core’s overall risk-bearing capacity, not whether it does so because of its risk 

aversion or initial risk exposure. We illustrate this point more formally in Appendix B.1, where  we  

show that the model with heterogeneous risk aversion (↵) delivers dealer removal e↵ects that are 

quantitatively similar to our baseline model. 

4.2.2 Bilateral Trading Costs 

Next, we consider an extension extension of the baseline model in which trading costs are lower 

in the inter-dealer market than they are when dealers trade with customers. This type of cost 

di↵erential could arise if adverse selection concerns due to information asymmetry (Kyle (1985)) are 

higher in dealer-customer transactions, for example because hedge funds trade based on speculative 

motives while dealers trade to manage risk. The limit as inter-dealer trading costs tend to zero is 

a natural benchmark to consider because it implies a frictionless inter-dealer market, which is a 

standard assumption in search-based models of OTC markets following the classic work of Du e, 

Gârleanu, and Pedersen (2005). This extension also allows us to highlight the di↵erent roles of 

dealer-dealer vs. dealer-customer trading frictions in OTC markets. 

We formally model heterogeneity in trading costs by adjusting each agent’s optimization prob-

lem as follows: 

n nX ↵ 2 2 
X 

ij 2 max !i(1 µ) +  ij (Rij µ) (!i + zi) (26) 
{ ij }nj=1,zi 2 2 ij 

j=1 j=1 

where ij = d if both i and j are dealers and ij = c otherwise. To understand the quantitative 

implications of this extension, we focus on the d ⇡ 0 case, which corresponds to a frictionless 

inter-dealer market. For any value of d, we can back out the values of c and ↵ that are necessary 

to match the observed level and dispersion of spreads, just as we did in Section 3.4. We  discuss  the  

details of the model and calibration at length in Appendix B.2. 

Interestingly, as we vary d, parameters c and ↵ do not need to adjust in order to match the 

level and dispersion in spreads. In fact, in the appendix, we show that the calibration of ↵ and c 

as outlined above delivers exactly the same parameter values as in our benchmark calibration.31 

31See Proposition A5 in Appendix B.2. 
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Also, the average pre-trade exposure of dealers, !d, is identical to the one in our baseline model at 

calibrated parameters. 

The reason for this result is that trading costs between dealers do not impact their total CDS 

position as a group in equilibrium, but do alter the distribution of net CDS positions within the 

core. By contrast, risk aversion, trading costs between customers and dealers, along with the 

relative risk-bearing capacity of the two groups, are a central determinant of the average level of 

spreads, how much protection is sold by dealers, and how spreads di↵er on average in dealer-dealer 

and dealer-customer trades. Thus, ↵, c, !d, and !c do not change because we continue to match 

the average net position of dealers and average spreads in the dealer-dealer and dealer-customer 

markets. 

The preceding equilibrium logic also highlights why the calibrated distribution of !i across 

dealers varies with d. Intuitively, when trading frictions are higher within the dealer sector, a 

wider distribution of ! is required to match the observed distribution of CDS purchases in sales. 

For instance, for a dealer to purchase a lot of protection, its desire to hedge credit risk must be 

high enough that it is willing to pay the large utility cost d of trading. Similarly, a dealer who 

sells lots of protection must start with a relatively low exposure to default risk, !. On the other 

hand, when the cost of trading between dealers is low, the distribution of ! does not need to be as 

disperse in order to match the empirical distribution of net CDS positions. 

Table 7 summarizes the e↵ects of removing dealers from di↵erent points in the distribution 

of net positions in the case that d is negligible, and equal to 10 8 . In this calibration dealers 

have numerically indistinguishable post-trade net positions – that is, they share risk perfectly. We 

simulate dealer failure in this setting based on the same procedure used in Section 4.1. In our 

baseline model, dealer-dealer spreads and dealer-customer spreads rise by 31 bps (24%) and 16 

bps (11%), respectively, when the largest net-selling dealer is removed. In the case of a frictionless 

inter-dealer market, dealer-dealer and dealer-customer spreads rise by 10 bps (8%) and 5 bps (4%), 

respectively. While the impact of failure on spreads in both markets is diminished by a factor of 

about 3, it is not zero as in the case of a complete network or no trading costs. The reason is 

twofold. First, even with perfect interdealer risk-sharing, the observed large amount of protection 

sold by the largest net-selling dealer implies enough dealer heterogeneity that losing this dealer’s 

risk-bearing capacity still causes spreads to increase by a material amount. Second, trading costs 

between dealers and customers prevent customers from replacing the (still substantial) lost capacity 

from this dealer. 

The dampened e↵ect from the loss of the largest net-selling dealer is driven entirely by the fact 

that the dispersion in dealers’ pre-trade exposures is lower when d is low. When d is small, the 

exiting dealer’s ! is less extreme compared to the rest of the dealer sector. In turn, there is a 

smaller change in the sector’s risk bearing capacity when this dealer exits. When d is equal to 

as in our baseline model, removing the largest net selling dealer switches the dealer sector overall 

from being a net seller of credit insurance to demanding insurance from the customer sector. In 

contrast, when d ⇡ 0, the change in the net position of dealers is still sizable, however it is not 
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enough to change the role of the dealer sector as a net provider of credit insurance to the market 

overall. 

The impact of removing the largest net-buying dealer is also dampened in the case of a friction-

less inter-dealer market. The lower dispersion in initial exposures implied by observed net CDS 

trades given the lower level of inter-dealer trading costs makes both the net sellers and net buyers 

less extreme in terms of their positions. Removing the largest net demander of credit protection 

within the dealer sector still leads to a decrease in spreads as the dealer sector gains in overall 

risk-bearing capacity through the loss of this dealer, however the e↵ect is more modest than in the 

baseline model. 

Overall, the extended model with heterogenous trading costs reveals two unique insights relative 

to the prior literature on OTC markets and intermediary asset pricing. First, frictions between 

dealers and customers are enough to lead to large e↵ects from the loss of a single dealer, even 

if dealers can perfectly share risk with one another. Second, dealer heterogeneity is crucial for 

generating these e↵ects. The data on net positions reveals substantial heterogeneity in di↵erent 

dealers’ roles in CDS markets. There is no e↵ect from removing any dealer when the network is 

complete or trading costs are zero. Moreover, when the network is core-periphery and trading costs 

di↵er across agents, the e↵ect of dealer removal depends critically on the identity of the dealer that 

exits the market. 

4.3 Dealer Failure and Increases in Fundamental Risk 

Building o↵ of the preceding analysis, we now use the calibrated model with heterogeneous to 

study how the exit of a dealer would impact CDS markets if it were also accompanied by a change 

in preferences. We start from the calibrations in Tables 6 and 7. These scenarios correspond to 

our baseline model in which d = c and our extended model in which d ⇡ 0. We then remove 

the dealer who sells the most protection and simultaneously increase the cost of customer-dealer 

trades c and risk aversion ↵. An increase in c could be driven by heightened concerns about 

counterpary risk exposure or adverse selection. An increase in ↵ could occur if the shock that led 

the dealer to exit also impaired the balance sheets of remaining traders. Both types of preference 

shifts seem plausible in a full-blown economic crisis like the fall of 2008 or March 2020. 

Table 8 reports the resulting impact on dealer-dealer spreads and the top and bottom panels 

correspond to the baseline d = c model and the extended model in which d ⇡ 0, respectively. 

The first thing to notice is that even small changes in risk aversion ↵ can dramatically amplify the 

impact of dealer failure. In our baseline model where d = 7.78, spreads would rise 48 bps upon 

dealer exit if risk aversion ↵ were to increase 14% from 4.37 to 5. For low values of d (Panel B), 

the same change in risk aversion would cause spreads to rise by 25 bps, compared to a 10 bp change 

without any associated shift in risk aversion. 

Interestingly, Table 8 shows that for a given level of ↵, a simultaneous rise in c has a much 

smaller amplifying e↵ect. The reason network frictions ( c) have a small additive impact on prices 

is because there is less risk to be shared between customers and dealers after the largest net-selling 
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dealer fails. To see why, consider the case where d is low in Panel B. In this case, prior to 

failure, the average pre-trade exposure in the dealer sector is below the economy-wide average, i.e. 

!d = 0.86 < 1. This is largely driven by the one dealer – the one whose failure we simulate – and 

is also why dealers sell protection on average. After this dealer exits, the remaining dealers have 

an average exposure of close to 1. In other words, their pre-trade exposure to default risk is very 

close to that of customers. Consequently, there is not much risk to be shared via the CDS market, 

and network frictions c do not have much scope to impact pricing. 

Conclusion 

We develop a model of pricing in OTC markets. We emphasize two key trading frictions, namely, 

network incompleteness (i.e. a core-periphery structure), and bilateral trading costs. We show that 

the model’s main assumptions are supported in the data using detailed transaction and position-

level data from DTCC on credit default swaps. We then use the key pricing and quantity equations 

from the closed-form solution to our model in equilibrium to calibrate our model to this data. 

Our calibrated model then allows us to answer two important questions in OTC asset pricing 

quantitatively. 

First, we show how network frictions distort OTC prices away from their Walrasian, or complete 

network, benchmark. As long as the network is incomplete, and aversion to concentrated bilateral 

positions limits risk sharing, there is always a distortion. However, the sign depends on the relative 

risk bearing capacity of OTC intermediaries, or the dealer sector of our core-periphery network. 

If the dealer has a higher risk-bearing capacity than the customer sector, then network frictions 

distort prices downward, toward dealers’ shadow price of risk. By contrast, if the risk-bearing 

capacity of the OTC intermediary sector becomes impaired, for example through the loss of a key 

dealer, then prices are distorted upward. As a result, we argue that network frictions can lead to 

changes in credit spreads that do not rely on changes in parameters governing risk or risk aversion. 

Second, we use our calibrated model as a laboratory for regulators to evaluate the systemic 

importance of key OTC intermediaries. We measure the impact of dealer removal on prices and 

risk sharing in the OTC network. We show that the loss of a systemically important dealer causes a 

large increase in credit spreads. Crucially, this systemically important dealer is not only identified 

by its centrality as defined by measures of connectedness, as all dealers are fully connected to all 

other agents in our model. The key features of the most systemically important dealer in our model 

are that they are both a dealer (fully connected) and a large net provider of credit insurance. We 

find empirically that di↵erent dealers play very di↵erent roles within the intermediary sector. A 

small number of dealers are responsible for the fact that the dealer sector as a whole is a net 

provider of credit insurance, while many dealers maintain net neutral positions or are net buyers 

of protection. The e↵ect of dealer removal on prices depends critically on their net position, and 

removing a net demander of insurance can actually lead to lower prices. Importantly, we show 

that the e↵ects of dealer removal on prices are entirely due to network frictions. If the network is 
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complete, or if there are no bilateral trading costs, then there is no e↵ect of removing any dealer 

on prices or risk sharing. 
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Figures 

Figure 1: CDS Markets During the 2008 Global Financial Crisis 
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Notes: This  figure  plots  the  5-year  CDX  Investment  Grade  Index  from  June  1,  2006  through  January  31,  2010.  Source: Authors’  

analysis, which uses data provided to the OFR by The Depository Trust & Clearing Corporation. 
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Figure 2: Aggregate Credit Risk Factor 
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Notes: This  figure  plots  our  aggregate  credit  risk  factor  from  2002  through  2013.  We  construct  the  factor  on  each  date  by  

taking a cross-sectional average of 5-year CDS spreads for all U.S. firms. CDS spreads are obtained from Markit Ltd. 
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Figure 3: The Distribution of Post-Trade Net Exposures, zi for Dealers 
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Notes: This  figure  plots  the  distribution  of  dealer  exposure  to  aggregate  credit  risk,  scaled  by  their  equity,  for  the  period  

2010-01-04 through 2013-12-31. We compute each dealer’s notional exposure to aggregate credit risk across all of its bilateral 

positions using the methodology described in Section 3. The  aggregate  credit  risk  factor  we  use  is  the  cross-sectional  average  

of 5-year CDS spreads for all U.S. firms from the Markit database. We then scale each dealer’s notional exposure to aggregate 

credit risk by the market value of their its to obtain zi on each date. The plot shows the distribution of the average zi across 

dealers for our sample. Positive values of zi indicate that dealer i is a net seller of credit protection on the aggregate credit risk 

factor. For readability, we’ve scaled the y-axis so that the probability distribution integrates to 1000, not 1. Source: Authors’ 

analysis, which uses data provided to the OFR by the Depository Trust & Clearing Corporation. 
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Figure 4: Dealer Removal E↵ect for Di↵erent Dealer-Customer Spread Estimates 

50 

40 

30 

20 

10 

0 

Notes: This  figure  plots  the  change  in  the  average  dealer  market  spreads  upon  the  removal  of  the  largest  net-seller  dealer.  On  

the x-axis, we vary the customer-dealer spread, namely Rd Rc, which  in  turn  change  the  model-implied  values  for  ↵ and . 

Source: Authors’ analysis, which uses data provided to the OFR by the Depository Trust & Clearing Corporation. 
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TABLES 

Table 1: Summary Statistics of Bilateral Concentration and Price Concessions 

i,j,t 

Non-Dealers 

Dealers 

All 

p25 

0.03 

0.00 

0.00 

p50 

0.09 

0.01 

0.02 

p75 

0.18 

0.03 

0.07 

Mean 

0.16 

0.02 

0.07 

StdDev 

0.21 

0.04 

0.14 

PriceConcessionEW 

Non-Dealers 

Dealers 

All 

0.00 

0.00 

0.00 

0.00 

0.74 

0.51 

2.48 

3.21 

3.01 

2.93 

3.61 

3.41 

8.53 

9.99 

9.58 

PriceConcessionNW  

Non-Dealers 

Dealers 

All 

0.00 

0.00 

0.00 

0.00 

0.70 

0.49 

2.32 

3.13 

2.96 

2.90 

3.62 

3.40 

8.58 

10.12 

9.69 

Notes: This  table  presents  summary  statistics  of  bilateral  concentration  and  weekly  price  concessions  between  counterpar-

ties. i,j, measures the fraction of i’s total gross exposure to aggregate credit risk is with j as of the end of week t. 

PriceConcessioni,j,t is the average amount of basis points that agent i conceded in price to agent j over their trades in 

week t. The  superscript  on  PriceConcession  indicates whether it is computed using an equal-weighted (EW) or notional-

weighted (NW) average over the trades between i and j in week t. We  winsorize  both  measures  at  their  99%  tails. See  Section  3  

of the paper for more detail on how we construct PriceConcession, , and  the  aggregate  credit  risk  factor.  Dealers  are  defined  

according to the algorithm in Appendix C. The sample size of  the panel with both  concentration and price concession measures  

is 45,074. The sample runs from 2010-01-04 to 2013-12-31. Source: Authors’ analysis, which uses data provided to the OFR 

by the Depository Trust & Clearing Corporation. 
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d
e
s
 i

n
 w

e
e
k

 t
. 

i,
j,
t 

1
 

m
e
a
s
u
r
e
s
 t

h
e
 f
r
a
c
t
io

n
 o

f 
i’
s
 t

o
t
a
l 
g
r
o
s
s
 e

x
p
o
s
u
r
e
 t

o
 a

g
g
r
e
g
a
t
e
 c

r
e
d
it

 r
is

k
 i
s
 w

it
h

 j
 a

s
 o

f 
t
h
e
 e

n
d

 o
f 
w

e
e
k

 t
 

1
. 

S
e
e
 S

e
c
t
io

n
 3

 o
f 
t
h
e
 p

a
p
e
r
 f
o
r
 m

o
r
e
 d

e
t
a
il

 o
n

 h
o
w

 w
e
 c

o
n
s
t
r
u
c
t
 

S
j

P
ri
ce
C
on

ce
ss
io
n
, 

,

a
n
d

 th
e

 ag
g
r
e
g
a
t
e

 cr
e
d
it

 ri
s
k

 fa
c
t
o
r
.

 
i,
t 

is
 a

n
 i

 ⇥
 t

 fi
x
e
d

 e
↵
e
c
t
 i
n
t
e
r
a
c
t
e
d

 w
it

h
 a

 d
u
m

m
y

 f
o
r
 w

h
e
t
h
e
r
 i

 s
e
ll
s
 p

r
o
t
e
c
t
io

n
 t

o
 j

.
C

o
lu

m
n
s

 (1
)
-
(
4
)

 ru
n

 th
e

 
r
e
g
r
e
s
s
io

n
 w

h
e
n

 
 i
s
 d

e
fi
n
e
d

 u
s
in

g
 n

o
t
io

n
a
l 
v
a
lu

e
s
. 

C
o
lu

m
n
s
 (

5
)
-
(
8
)
 r

u
n

 i
t
 w

h
e
n

 
 i
s
 d

e
fi
n
e
d

 w
h
e
n

 
 i
s
 d

e
fi
n
e
d

 u
s
in

g
 D

V
0
1
s
 w

it
h

 r
e
s
p
e
c
t
 t

o
 a

g
g
r
e
g
a
t
e
 c

r
e
d
it

 r
is

k
, 
w

h
ic

h
 m

e
a
s
u
r
e
 

t
h
e
 a

m
o
u
n
t
 o

f 
m

a
r
g
in

 p
a
y
m

e
n
t
s
 t

h
a
t
 i

 w
o
u
ld

 m
a
k
e
 o

r
 r

e
c
e
iv

e
 i

f 
o
u
r
 a

g
g
r
e
g
a
t
e
 c

r
e
d
it

 r
is

k
 i

n
d
e
x

 w
e
r
e
 t

o
 g

o
 u

p
 b

y
 o

n
e
 b

a
s
is

 p
o
in

t
. 

S
e
e
 S

e
c
t
io

n
 3

 o
f 

t
h
e
 p

a
p
e
r
 f

o
r
 m

o
r
e
 d

e
t
a
il

 
o
n

 h
o
w

 w
e
 c

o
n
s
t
r
u
c
t
 G

iv
eU

p
, 

,
a
n
d

 th
e

 ag
g
r
e
g
a
t
e

 cr
e
d
it

 ri
s
k

 fa
c
t
o
r
.

 T
o

 b
e

 in
c
lu

d
e
d

 in
 th

e
 re

g
r
e
s
s
io

n
,

 i 
m

u
s
t
 h

a
v
e
 a

t
 l
e
a
s
t

fi
 v
e
 t

r
a
d
e
s
 i
n

 w
e
e
k

 t
.

W
e

 al
s
o

 w
in

s
o
r
iz

e
 th

e
 p
r
ic

e
 

c
o
n
c
e
s
s
io

n
 v

a
r
ia

b
le

s
 a

t
 t

h
e
ir

 1
%

 t
a
il
s
. 

I
n

 a
ll

 r
e
g
r
e
s
s
io

n
s
, 

w
e
 r

e
p
o
r
t
 s

t
a
n
d
a
r
d

 e
r
r
o
r
s
 t

h
a
t
 a

r
e
 c

lu
s
t
e
r
e
d

 b
y

 i
 b

e
lo

w
 p

o
in

t
 e

s
t
im

a
t
e
s
. 

*
 i
n
d
ic

a
t
e
s
 a

 p
-
v
a
lu

e
 o

f 
le

s
s
 t

h
a
n

 1
0
%

 a
n
d

 
*
*

 i
n
d
ic

a
t
e
s
 a

 p
-
v
a
lu

e
 o

f 
le

s
s
 t

h
a
n

 5
%

. 
T

h
e
 f
u
ll

 s
a
m

p
le

 r
u
n
s
 f
r
o
m

 2
0
1
0
-
0
1
-
0
4

 t
o

 2
0
1
3
-
1
2
-
3
1
. 

T
h
e
 d

e
a
le

r
 s

u
b
s
a
m

p
le

 s
p
a
n
s
 t

h
e
 s

a
m

e
 p

e
r
io

d
, 
b
u
t
 r

u
n
s
 t

h
e
 r

e
g
r
e
s
s
io

n
 o

n
ly

 f
o
r
 t

h
e
 

s
u
b
s
e
t
 w

h
e
r
e
 i

 i
s
 a

 d
e
a
le

r
. 

D
e
a
le

r
s
 a

r
e
 d

e
fi
n
e
d

 a
c
c
o
r
d
in

g
 t

o
 t

h
e
 a

lg
o
r
it

h
m

 i
n

 A
p
p
e
n
d
ix

 C
.
S
o
u
r
c
e
:

 A
u
t
h
o
r
s
’

 an
a
ly

s
is

,
 w

h
ic

h
 u
s
e
s

d
a
t
a

 p
r
o
v
id

e
d

 to
t
h
e

O
F
R

 b
y

t
h
e

D
e
p
o
s
it

o
r
y

 
T
r
u
s
t 

&
 C

le
a
r
in

g
 C

o
r
p
o
r
a
t
io

n
. 
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p
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m
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ee
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B

u
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A
ll

 
5

p
er

 (f
,w
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 p
er

 (
f
,w

) 
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 p
er
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f
, w

) 

E
W

LW
 

E
W

LW
 

E
W

LW
 

E
W

LW
 

#
 T

ra
d
es

 
8 
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A
vg

. 
S
p
re

ad
 (

b
p
s)
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3 
15

3 
15

0 
15

9 
16

1 
16

4 
17

3 
17

0 

A
vg

. 
E

D
F

 (
b
p
s)

 
65
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68
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82
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A
vg

. 
L
os

s-
G

iv
en

-D
ef

au
lt
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%

) 
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.4
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.2

 
60

.2
 

60
.0

 
59

.9
 

59
.8

 

A
vg

. 
M

at
u
ri

ty
 (

Y
ea

rs
) 

3.
7 

4.
0 

4.
1 

4.
1 

4.
1 

4.
1 

4.
1 

4.
1 

A
vg

. 
N

ot
io

n
al
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m

m
) 

6.
3 

5.
7 

5.
9 

5.
6 

5.
6 

5.
4 

5.
2 

5.
1 

%
 T

ra
d
es

 D
ea

le
r-

to
-D

ea
le

r 
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76

 
78

 
79

 

%
 N

ot
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n
al

 D
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le
r-

to
-D

ea
le

r 
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75
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76

 
78

 
79
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#
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f 
(f
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) 

gr
ou

p
s 
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,4
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,4

09
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,0
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25
,0

53
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,7

33
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,7

33
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0 
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0 

N
o
te
s:

T
h
is

 ta
b
le

 p
r
e
s
e
n
t
s

 su
m

m
a
r
y

 st
a
t
is

t
ic

s
 of

 sp
r
e
a
d
s

 an
d

 tr
a
d
in

g
 ac

t
iv

it
y

 ac
r
o
s
s

fi
 

r
m

-
w

e
e
k

 p
a
ir

s
 (f
, w

)
. 

W
it
h
in

 e
a
c
h

 (
f
, w

)
g
r
o
u
p
,

 w
e

c
o
m

p
u
t
e

e
a
c
h

s
t
a
t
is

t
ic

(
e
.g

.,
 av

e
r
a
g
e

 

s
p
r
e
a
d
)
. 

W
e
 t

h
e
n

 a
v
e
r
a
g
e
 t

h
e
s
e
 s

t
a
t
is

t
ic

s
 a

c
r
o
s
s
 (
f
, w

)
 g

r
o
u
p
s
 u

s
in

g
 e

q
u
a
l 
w

e
ig

h
t
s
. 

W
e
 a

ls
o

 l
iq

u
id

it
y
-
w

e
ig

h
t
 (

L
W

)
 a

c
r
o
s
s
 g

r
o
u
p
s
, 
w

h
e
r
e
 a

 g
r
o
u
p
s
’ 
li
q
u
id

it
y

 w
e
ig

h
t
 i
s
 d

e
t
e
r
m

in
e
d

 

b
y

 t
h
e
 n

u
m

b
e
r
 o

f 
t
r
a
d
e
s
 i

n
 t

h
a
t
 (
f
, w

)
g
r
o
u
p
.

 F
o
r

t
h
e

%
o
f

 d
e
a
le

r
-
d
e
a
le

r
t
r
a
d
e
s
,

 w
e

d
e
fi

 
n
e

u
s
e

o
u
r

d
e
fi

 
n
it

io
n

o
f

 d
e
a
le

r
s

fr
o
m

A
p
p
e
n
d
ix

 C
.
N

o
t
io

n
a
l
v
a
lu

e
s

a
r
e

r
e
p
o
r
t
e
d

in
$

 

m
il
li
o
n
s
 a

n
d

 C
D

S
 s

p
r
e
a
d
s
 a

r
e
 r

e
p
o
r
t
e
d

 i
n

 b
a
s
is

 p
o
in

t
s
. 

O
u
r
 s

a
m

p
le

 c
o
n
t
a
in

s
 o

n
ly

 s
in

g
le

 n
a
m

e
 t

r
a
n
s
a
c
t
io

n
s
 o

n
fi
r
m

s
 t

h
a
t
 a

r
e
 d

o
m

ic
il
e
d

 i
n

 t
h
e
 U

n
it

e
d

 S
t
a
t
e
s
. 

I
n

 a
d
d
it

io
n
, 
w

e
 

c
o
n
s
id

e
r
 t

r
a
d
e
s
 t

h
a
t
 a

r
e
 i
n

 d
e
n
o
m

in
a
t
e
d

 i
n

 U
S
D

, 
h
a
v
e
 d

o
c
u
m

e
n
t
a
t
io

n
 c

la
u
s
e
 X

R
 (

n
o

 r
e
s
t
r
u
c
t
u
r
in

g
)
, 
a
n
d

 a
r
e
 f
o
r
 s

e
n
io

r
 u

n
s
e
c
u
r
e
d

 d
e
b
t
 (

t
ie

r
 =

 S
N

F
O

R
)
. 
W

e
 a

ls
o

 d
r
o
p

 c
o
n
t
r
a
c
t
s
 

b
e
t
w

e
e
n

 n
o
n
d
e
a
le

r
s
 a

n
d

 n
o
n
d
e
a
le

r
s
 (

o
n
ly

 0
.3

1
%

 o
f
 t

o
t
a
l)

 a
n
d

 t
h
o
s
e

 w
h
o
s
e

 f
a
ir

-
v
a
lu

e
 s

p
r
e
a
d

 i
s
 a

b
o
v
e

 1
0
0
0

 b
a
s
is

 p
o
in

t
s
. 

W
e

 t
h
e
n

 w
in

s
o
r
iz

e
 f
a
ir

-
v
a
lu

e
 t

r
a
n
s
a
c
t
io

n
 C

D
S

 s
p
r
e
a
d
s
 

a
t
 t

h
e
ir

 t
h
e
 5

%
 t

a
il
s
. 

T
h
e
 a

v
e
r
a
g
e
 E

D
F

 (
b
p
s
)
 r

o
w

 c
o
r
r
e
s
p
o
n
d
s
 t

o
 t

h
e
 5

-
y
e
a
r
 e

x
p
e
c
t
e
d

 d
e
fa

u
lt

 f
r
e
q
u
e
n
c
y

 f
r
o
m

 M
o
o
d
y
’s

. 
F
o
r
 t

r
a
n
s
a
c
t
io

n
s
 w

h
e
r
e
 t

h
e
 u

n
d
e
r
ly

in
g

 fi
r
m

 d
o
e
s
 n

o
t
 

h
a
v
e
 a

 m
a
t
c
h

 i
n

 M
o
o
d
y
’s

 E
D

F
 d

a
t
a
b
a
s
e
, 
w

e
fi
ll

 i
n

 t
h
e
 m

is
s
in

g
 v

a
lu

e
 w

it
h

 t
h
e
 a

v
e
r
a
g
e
 E

D
F

 f
o
r

fi
r
m

s
 i
n

 t
h
e
 s

a
m

e
 r

a
t
in

g
 d

u
r
in

g
 t

h
e
 w

e
e
k

 o
f 

t
h
e
 t

r
a
d
e
. 

T
h
e
 l
o
s
s
-
g
iv

e
n
-
d
e
fa

u
lt

 

d
a
t
a

 c
o
m

e
s
 f
r
o
m

 M
a
r
k
it

. 
T

h
e
 s

a
m

p
le

 r
u
n
s
 f
r
o
m

 2
0
1
0
-
0
1
-
0
4

 t
o

 2
0
1
3
-
1
2
-
3
1
. 

S
o
u
r
c
e
: 

A
u
t
h
o
r
s
’ 
a
n
a
ly

s
is

, 
w

h
ic

h
 u

s
e
s
 d

a
t
a

 p
r
o
v
id

e
d

 t
o

 t
h
e
 O

F
R

 b
y

 t
h
e
 D

e
p
o
s
it

o
r
y

 T
r
u
s
t
 &

 C
le

a
r
in

g
 

C
o
r
p
o
r
a
t
io

n
. 
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D
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d
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b
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F
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V
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u
e 

C
D

S
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ra
n
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n
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p
re
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b
p
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R
ob

u
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 D
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le
r 

S
el
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on
 

D
T

C
C

 D
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F
u
ll

 S
am

p
le
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yr
 M

at
u
ri

ty
 

H
ig

h
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om
p
et

it
io

n
 

F
u
ll

 S
am

p
le

 
5-

yr
 M

at
u
ri

ty
 

H
ig

h
 C

om
p
et

it
io
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(1
) 

(2
) 

(3
) 

(4
) 

(5
) 

(6
) 

M
ar
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t 

S
p
re

ad
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b
p
s)

 
0.
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**

 
0.
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0.
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0.
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**
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.0
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.0
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.0
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.0
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.0
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u
st

om
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r)
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2)
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.9
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(0
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.9
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O
ve
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2
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0.
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0.
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0.
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0.
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0.
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08
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42
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9,
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6 
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N
o
te
s:

T
h
is

 ta
b
le

 p
r
e
s
e
n
t
s

 re
g
r
e
s
s
io

n
s

 of
 th

e
 fo

ll
o
w

in
g

 fo
r
m

:
 

S
p
re

a
d
k
,f

,t
 =

 F
E

(
F
ir

m
)
 +

 F
E

(
I
G

 ⇥
 M

a
t
 B

u
c
k
e
t
k

 ⇥
 W

e
e
k
) 
+

 ✓
1

 ⇥
 M

a
rk

it
S
p
re

a
d
f
,t

 

+
 ✓
2

 ⇥
 lo

g
(
N
ot
io
n
a
l k

,t
)
+

 
⇥

 1
k
,t
(
C

u
s
t
o
m

e
r
-
D

e
a
le

r
)
 +

 "
 k,

f
,t

 

S
p
re

a
d
k
,f

,t
 
is

 t
h
e
 f

a
ir

-
v
a
lu

e
 s

p
r
e
a
d

 (
in

 b
a
s
is

 p
o
in

t
s
)
 f

o
r
 t

r
a
n
s
a
c
t
io

n
 k

,
w

r
it

t
e
n

 on
 fi

 
r
m

 f
,

a
n
d

 ex
e
c
u
t
e
d

 on
 d
a
t
e

 t.
 
M

a
rk

it
S
p
re

a
d
f
,t

 
is

 t
h
e
 5

-
y
e
a
r
 C

D
S

 s
p
r
e
a
d

 f
r
o
m

 M
a
r
k
it

’s
 

s
in

g
le

n
a
m

e
 d

a
t
a
b
a
s
e
 t

h
a
t
 i
s
 a

s
s
o
c
ia

t
e
d

 w
it

h
 fi

r
m

 f
 o

n
 d

a
t
e
 t

. 
N
ot
io
n
a
l k

,t
 
is

 t
h
e
 n

o
t
io

n
a
l 
a
m

o
u
n
t
 i
n

 t
h
e
 t

r
a
n
s
a
c
t
io

n
. 

1
k
,t
(
D

e
a
le

r
-
D

e
a
le

r
)
 i
s
 a

 d
u
m

m
y

 v
a
r
ia

b
le

 t
h
a
t
 e

q
u
a
ls

 1
 

if
 t

h
e
 t

r
a
n
s
a
c
t
io

n
 i
s
 b

e
t
w

e
e
n

 t
w

o
 d

e
a
le

r
s
 a

n
d

 i
s
 z

e
r
o

 o
t
h
e
r
w

is
e
. 

I
n

 c
o
lu

m
n
s
 (

1
)
-
(
4
)
, 

d
e
a
le

r
s
 a

r
e
 d

e
fi
n
e
d

 a
c
c
o
r
d
in

g
 t

o
 t

h
e
 a

lg
o
r
it

h
m

 i
n

 A
p
p
e
n
d
ix

 C
 a

n
d

 i
n

 c
o
lu

m
n
s
 (

5
)
-
(
8
)
 w

e
 

u
s
e
 t

h
e
 D

T
C

C
’s

 l
a
b
e
li
n
g

 o
f 
d
e
a
le

r
s
. 

F
E

(
F
ir

m
)
 i
s
 a

fi
x
e
d

 e
↵
e
c
t
 b

a
s
e
d

 o
n

 t
h
e
 u

n
d
e
r
ly

in
g

fi
r
m

 f
 i

n
 t

h
e
 t

r
a
n
s
a
c
t
io

n
. 

F
ir

m
(
I
G
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M
a
t
B

u
c
k
e
t
k
⇥

W
e
e
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Table 5: Calibration 

Parameter Value Source 

z̄d 0.045 DTCC Data 2010-2013 

R̄c R̄d (bps) 5.12 DTCC Data 2010-2013 

R̄d (bps) 133.00 DTCC Data 2010-2013 

n 723 DTCC Data 2010-2013 

nd 14 DTCC Data 2010-2013 

L = Loss-Given-Default 60.60% Markit 

p = Probability of Default 0.65% Moody’s 

d 0.32 Model Implied 

↵� 2! + µ 143.04 Model Implied 

↵ 4.37 Model Implied 

7.98 Model Implied 

Notes: This  table  shows  parameters  used  to  calibrate  the  model.  z̄  d is the time-series average of dealer exposure. For each 

week, we compute the average dealer z̄  d across dealers, then report the time-series average for the full sample in the table. 

Section 3.3.1 contains a full description of this procedure. Dealers are those identified by the algorithm described in Appendix 
¯ ¯ 

customer-dealer trade (see Table 4 for complete details). Rd is the average transaction spread in the CDS market from Table 3. 

C. Rc Rd is the estimate that comes out of a regression of transaction spreads on a dummy variable for if the transaction is a 
¯ 

n is the total number of counterparties in the network. nd is the number of dealers. L and p are the physical loss-given-default 

and probability of default for the firms that are included in our estimation of Rc Rd. See  Table  4 for more details on this ¯ ¯ 

set of firms. The remaining parameters in the table are implied by our structural model. Specifically, the values of and 

are computed according to Equations (16) and  (17), where ! is normalized to one. The expected loss rate is given by µ = Lp 
2

and its variance given by = L2p (1 p). The average complete network benchmark price, RComplete Network = ↵� 2! + µ is 
n↵�

in basis points. From Equation (11), we have d = 
2 

. See  Appendix  A for detailed derivations of the model. Source: 
n↵� 2+2 

Authors’ analysis, which uses data provided to the OFR by the Depository Trust & Clearing Corporation. 
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Table 6: Dealer Removal 

Benchmark Top 90th prc. Median Bottom 

(1) (2) (3) (4) (5) 

Number of dealers 14 13 13 13 13 

Complete network R (bps) 143.04 143.88 143.21 143.02 142.80 ‘ 

Rd (bps): 133.00 164.31 138.61 131.35 123.11 

Rc (bps): 138.12 153.91 140.95 137.29 133.14 

zd 0.045 0.092 0.021 0.053 0.089 

Notes: This  table  reports  the  number  of  dealers,  the  average  spreads  under  the  complete  network,  the  average  spreads  in  

the dealer market, the average spreads in the customer market, and the average net position of dealers. We define dealers 

precisely in Section I.1.1.2. Column  (1)  reports  our  benchmark  calibration. In  Column  (2)  reports  the  results  after  removing  

the largest net-seller. Column (3) reports results after removing one dealer at the 90
th 

percentile. Column (4) reports results 

after removing the dealer with the median net position, and Column (5) reports results after removing the dealer that is the 

largest net buyer in the baseline model. Source: Authors’ analysis, which uses data provided to the OFR by the Depository 

Trust & Clearing Corporation. 
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Table 7: Dealer removal e↵ects and heterogeneous trading costs 

Benchmark Top 90th prc. Median Bottom 

(1) (2) (3) (4) (5) 

Number of dealers 14 13 13 13 13 

Complete network R (bps) 143.04 143.32 143.11 143.05 142.98 

Rd (bps): 133.00 143.00 134.79 132.49 129.84 

Rc (bps): 138.12 143.17 139.02 137.87 136.53 

zd 0.045 0.001 0.038 0.048 0.059 

Notes: This  table  reports  the  number  of  dealers,  the  average  spreads  under  the  complete  network,  the  average  spreads  in  the  
dealer market, the average spreads in the customer market, and the average net position of dealers for the model extension 
featuring heterogeneous trading costs discussed in Section 4.2.2. See  the  heterogeneous  trading  cost  model  derivations  in  
Appendix B.2. Parameter  d is set to 10 8

. Parameters  c and ↵ are calibrated so that the model-implied dealer and customer 
average prices prior to any dealer removal match the value observed in the data of 138.12 and 133 basis points, respectively. We 
define dealers precisely in Section I.1.1.2. Column  (1)  reports  our  calibration  without  dealer  removal. In  Column  (2)  reports  the  
results after removing the largest net-seller. Column (3) reports results after removing one dealer at the 90

th 
percentile. Column 

(4) reports results after removing the dealer with the median net position, and Column (5) reports results after removing the 
dealer that is the largest net buyer in the baseline model. Source: Authors’ analysis, which uses data provided to the OFR by 
the Depository Trust & Clearing Corporation. 

Table 8: Dealer removal e↵ect varying risk aversion and trading costs 

Risk aversion 

Trading Costs ↵ = 4.37 ↵ = 4.50 ↵ = 5.00 ↵ = 5.50 ↵ = 6.00 

Panel A: e↵ect on dealer prices (bps) under d = 7.98 

c = 7.98 31.31 34.81 48.27 61.63 74.90 

c = 15 34.90 38.56 52.63 66.62 80.52 

c = 20 36.16 39.88 54.20 68.45 82.61 

c = 30 37.56 41.35 55.97 70.52 85.01 

Panel B: e↵ect on dealer prices (bps) under d = 10 8 

c = 7.98 10.00 13.07 24.94 36.81 48.68 

c = 15 9.95 13.01 24.87 36.73 48.59 

c = 20 9.93 12.99 24.85 36.70 48.56 

c = 30 9.91 12.97 24.82 36.67 48.52 

Notes: This  table  reports  dealer  removal  e↵ects  on  prices  when  combined  with  increases  in  risk  aversion  and  trading  costs.  
The model specification considered here features heterogeneous trading costs discussed in Section 4.2.2. See  the  heterogeneous  
trading cost model derivations in Appendix B.2. Parameter  d varies across Panels, from its benchmark value in Panel A to 

8
10 in Panel B. In each panel, the value reported in the upper left corner is the dealer removal e↵ect on dealer prices at 
calibrated parameters from Table 7—that is, parameters c and ↵ are calibrated so that the model-implied dealer and customer 
average prices before the dealer removal match the value observed in the data of 138.12 and 133 basis points, respectively. 
As we move across columns (rows), we report the dealer removal e↵ect on prices when combined with an increases in ↵ ( c). 
Source: Authors’ analysis, which uses data provided to the OFR by the Depository Trust & Clearing Corporation. 
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Appendix 

A Model Derivations 

A.1 Solving the Model 

Agent i’s optimization problem is given by Equation (1): 

{ 
max wi(1 

ij }n ,zij=1

nX 
µ) +  

j=1 

ij (Rij µ) 
↵ 2(wi + zi)
2 

2 
nX 

2 
j=1 

2 
ij 

subject to 

ij = 0  if  gij = 0, 

and 
nX 

zi = ij . 
j=1 

Agent i’s first-order conditions give us: 
( 

1 (Rij 
ij = 

0 

µ) 1 ẑi if gij = 1  

if  gij = 0, 
(A1) 

where 
2ẑi = (wi + zi)↵� , 
Pn 1 nX 

Ki j=1 gij (Rij 
zi = ij = 

+ ↵�j=1 Ki 

µ) 
2 

↵wi 
2 

, 

(A2) 

(A3) 

and 
nX 

Ki = gij . (A4) 
j=1 

We can derive Equation (8) by combining Equations (2), (6), and (7). Furthermore, to fully characterize the 
equilibrium, we solve for equilibrium quantities by rewriting Equation (8) in matrix notation as follows: 

z + ! = (I  ⇤)! + ⇤G̃(z + !), 

where z = [z1, . . . , zn]0 and w = [w1, . . . , wn]0 are column vectors of net positions and pre-trade exposures, 
˜⇤ is a diagonal matrix with the ith element given by i, and G is a n ⇥ n matrix with the ijth entry given 

by g̃ij . 
We can solve the system of equations for the equilibrium net positions and post-trade exposures: 

z + w = (I  ⇤G̃) 1(I ⇤)w, (A5) 

which fully characterize the solution of the model. Equation (A5) defines the map between agents’ pre-trade 
exposures to the underlying asset on the right-hand side and their post-trade exposures on left-hand side. 
The right-hand side of the equation depends only on exogenous parameters of the model. 

A.1.1 Complete Network 

Under the complete network benchmark, we have gij = 1 for every i and j. In this case, Ki = n for every i, 
1 n↵�and g̃ij = for every i and j. Also, i = 

2 
⌘ for every i, and the matrix G̃ is becomes idempotent, n n↵� 2+2 
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G̃2 ˜i.e., = G. Therefore, the vector of net positions becomes: 

z + ! = (I  ⇤G̃) 1(I ⇤)w 

˜ 1!= (1  )(I G)
✓ ◆ 

˜= (1  ) I +  G ! 
1 
˜= (1  )! + G!. 

Specifically, the post-trade exposure of agent i is given by: 
0 1 

nX 
@ 1 

zi + wi = (1  )wi + wj A . 
n 

j=1 

The average prices in equilibrium becomes: 

n nXX1 
RComplete Network ⌘ Rij

n2 
i=1 j=1 

n n2 XX↵� 1 
= (ẑi + ẑj ) +  µ 

n2 2 
i=1 j=1 

n n2 XX↵� 1 
= (zi + !i + zj + !j ) +  µ 

n2 2 
i=1 j=1 

= 2↵! + µ, 

Pnwhere ! = 1 !i. n i=1 

A.1.2 Equilibrium properties 

Although the model features closed-formed solutions, the equilibrium variables still depend on the entire 
trading network. In this subsection, we exploit some limiting cases of the model. First, we define what it 
means for two agents to be path-connected. 

Definition A1. Two players i and j are path-connected if there is a sequence of agents {s1, s2, . . . , sk} such 
that: 

gis1 = g = . . . = g = gsk j = 1.s1s2 sk 1sk 

The following proposition shows that when there is no counterparty-specific risk aversion, i.e., = 0, then 
there is perfect risk sharing among path-connected agents. The corollary following the proposition shows 
that if all agents are path-connected, then perfect risk sharing among all agents is achieved in equilibrium. 

Proposition A1. If = 0  for every i = 1, . . . , n, then any two path-connected agents have the same 
post-trade exposure: 

(zi + wi) = (zj + wj ) 

for any i and j who are path connected. 

Proof. Suppose players i and j are path-connected, but 

(zi + wi) 6= (zj + wj ). 

Then, there are two agents, say s and l, that are directly connected with each other (i.e., gsl = 1) and have 
di↵erent post-trade exposure (i.e., zs + ws =6 zl + wl). If both agents are maximizing and their first-order 
conditions hold with equality, then we have that: 

2 2Rsl µ = ↵(zs + ws) = ↵(zl + wl) =) zi + wi = zj + wj 
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Corollary A1. If = 0  for every i = 1, . . . , n, and all agents are path connected, then there is perfect 
risk-sharing in equilibrium, i.e., X1 

zi + wi = wj , 
n 

j 

and equilibrium prices are given by: 
Rij µ = 2↵! 8i, j, 

Pn1
where ! = !i. n i=1 

Proof. We know that: 
zi + wi = zj + wj = zw, 

where zw is a constant. We also know that X 
zj = 0, 

j 

from the clearing conditions. 

Finally, the next proposition shows that when counterparty-specific risk aversion goes to infinity, then 
the equilibrium features autarky, regardless of the trading network in place. 

Proposition A2. If ! 1 for every i = 1, . . . , n, then there is no trade in equilibrium, regardless of the 
network structure. 

Proof. From the first-order conditions, we get that ij = 0 for any two agents i and j. 

A.2 Model with Core-Periphery Network 

A.2.1 Dealer market 
PnUsing the clearing conditions to get s = 0, along with having gij = 1 for every j if i is a dealer, we s=1 z 

can use Equation (8) to get following expression for post-trade exposures of dealers: 

zi + !i = (1  d)!i + d! 8i = 1, . . . , nd, (A6) 

where 

2n↵ 
d = 

n↵ 2 + 2  
Pn1and ! = !j . Hence, dealers’ post-trade exposures are a convex combination of their own pre-trade n j=1 

exposure, i.e., !i, and the average pre-trade exposure in the economy, i.e., !. 
The average post-trade exposure in the dealer market is given by: 

X1 
nd 

zd + !d = (zi + !i) = (1  d)!d + d!. 
nd i=1 

The equilibrium price of a contract between dealers i and j is given by: 
 

!i + !j2Rij µ = ↵� d! + (1  d) ,
2 

P P1 nd ndand the average price in the dealer market, i.e., Rd = 2 Rij , is given by: 
n i=1 j=1 
d 

Rd µ = ↵� 2! (1 d)↵� 
2(! !d), 

P 
where !d = 1 nd !i. nd i=1 
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A.2.2 Customer market 

Applying Equation (8) to customers gives us the following expression for their post-trade exposures: 
2 3 
X1 
nd 

zi + !i = (1  ¯ 
c)!i + ¯ 

c 4 (zj + !j ) +  zi + !i5 8i = nd + 1, . . . , n,  
nd + 1  

j=1 

(nd+1)↵�where ¯ 
c = 

2 

. We can use Equation (11) to write the post-trade exposures as follows: (nd+1)↵� 2+2 

zi + !i = c! + (1  c)!i c(1 d)(! !d) 8i = nd + 1, . . . , n,  (A7) 

nd↵� 2 

where c = . nd↵� 2+2 

The equilibrium price of contract between a customer i 2 {nd + 1, . . . , n} and a dealer j 2 {1, . . . , nd} is 
given by: 

✓ ◆ 
zi + !i + zj + !j2Rij µ = ↵� 

2 
2 2 

= ↵� 2!
↵� 

c(1 d)(! !d) +  
↵� 

[(1 c)(!i !) + (1  d)(!j !)] ,
2 2 

where we used Equations (A6) and (A7) to derive the last expression. 
Hence, the average price in the customer market, i.e., 

X X1 
nd n 

Rc = Rij , 
nd(n nd) j=1 i=nd+1 

is given by: 
 

1 ndRc µ = ↵� 2! ↵� 2(! !d) (1 + c)(1 d) (1 c) . 
2 n nd| {z } 

nd>0 i↵  n < 12 

We can also write the average price in the customer market as a function of the average price in the 
dealer market as follows: 

 
1 n nd ndRc = Rd + ↵� 2(1 c) 1 + (1  d) (! !d)
2 nd n nd 

Proposition 1 is a direct implication of Equations (12), (14) and (15). 

A.2.3 Calibration 

From Equation (11), we can compute (! !d) as a function of zd and d: 

zd! !d = . (A8) 
d 

Furthermore, we can write d as follows: 

↵� 2zd 
d = , (A9) nd↵� 2zd + Rc Rd 2 1 n 

by taking the di↵erence between Equations (12) and (14) and solving for d. 
We can use market clearing conditions and the definition of ! to write zc and !c as a function of zd, !d, 
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and !: 

nd zc = zd (A10) 
n nd 

n! nd!d!c = (A11) 
n nd 

The complete network benchmark price can be written as: 

⇣ ⌘1 d nd2↵� 2! = Rd µ + zd↵� = Rd µ + (Rc Rd)2 1 , 
d n 

where the first equality is derived by combining Equations (12) and (A8), and the second equality is obtained 
by substituting in Equation (A9). 

We can rearrange Equation (22) to compute ↵ as follows: 

h ⇣ ⌘i1 nd↵ = Rd µ + (Rc Rd)2 1 , (A12) 
2! n 

and we can rearrange d defined in Equation (11) to compute as follows: 
✓ ◆ 

1 1 d2 = n↵ (A13) 
2 d" # 
1 Rc Rd 2 1 nd 

2 n= n↵ (A14) 
2 ↵� 2zd 

✓ ◆ 
Rc Rd= (n nd) (A15) 

zd 

where d is computed from Equation (A9). 
To compute the model-implied dealers’ pre-trade exposures, we can rearrange Equation (A6) as follows: 

! !i = 
zi 8i = 1, . . . , nd, (A16) 
d 

and to compute customers’ pre-trade exposure we can rearrange Equation (A7) as well: 

! !i = 
zi + (1  d)(! !d) 8i = nd + 1, . . . , n.  (A17) 
c 

These are useful objects on their own. These are agents’ model-implied pre-trade exposures, and they allow 
us to measure which market participant is more or less risky ex-ante. 

A.2.4 Comparative statics 

In this subsection, we analyze how equilibrium prices depend on risk aversion and aversion to holding 
concentrated position risk. The following proposition shows how equilibrium prices and spreads depend on 
↵ and . 

d 1Proposition A3. If < and ! > !d > 0, then the following comparative statics hold: n 2 

@ @ @ @
(i) @� Rd < 0, @� Rc < 0, @� RComplete Network = 0, @� RComplete Network Rd > 0, 

@ @ 
@� @�RComplete Network Rc > 0, and  Rc Rd > 0, 

@ @ @ @ 
@↵ @↵ @↵ @↵(ii) Rd > 0, Rc > 0, RComplete Network > 0, RComplete Network Rd > 0, 
@ @ 
@↵ @↵RComplete Network Rc > 0, and  Rc Rd > 0. 
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The proof consists of taking these derivatives using Equations (9), (12), (14), and (15). In this proposi-
tion, we assume dealers to be less exposed to the underlying default risk, i.e., ! > !d, which implies dealers 
as net sellers in equilibrium, i.e., zd > 0. This is consistent with the evidence presented in Section 3.3. 

Aversion to bilateral concentration has no e↵ect on the complete network benchmark average price and 
has a negative e↵ect on the average price in the dealer and customer markets (item i). As increases, 
agents are more averse to trading too much with one counterparty. Hence, there is less risk sharing in the 
equilibrium with a higher , which means that both customer and dealer post-trade exposures are closer to 
their pre-trade exposures. When dealers are net sellers of protection, this implies lower post-trade exposures 
for dealers and higher post-trade exposures for customers when increases. 

The deterioration in risk sharing caused by an increase in changes equilibrium prices. For average 
customer prices, has two o↵setting e↵ects. On the one hand, it increases customer exposures which 
increases customer prices. On the other hand, because dealers absorb less risk from the customer sector, 
they have lower post-trade exposures to aggregate default risk, which pushes customer prices down. Given 
that dealers are small in number relative to customers, market clearing implies that the average post-trade 
exposure of dealers decreases by more than the increase in average post-trade exposure of customers. As 
a result, equilibrium prices in both the dealer and customer markets then decline. Intuitively, equilibrium 
prices are lower in the customer market to o↵set the higher costs of holding concentrated positions. Note 
that, in the dealer market, both lower post-trade exposures, and the burden of higher marginal costs of 
bilateral concentration, drive prices down. Since the two e↵ects work in the same direction, average prices 
in the dealer market decrease by more than in the customer market. As a result, the gap between CDS 
premiums in customer-dealer and dealer-dealer trades widens. 

Risk aversion increases the average price in both dealer and customer markets, as well as the complete 
benchmark price (items ii). As agents become more risk-averse, protection against aggregate default risk 
becomes more expensive. Similar to the e↵ect of an increase in , risk aversion also increases the spread 
between the average price in the dealer and customer markets. However, the economic mechanism behind 
the comparative statics for ↵ is entirely di↵erent. 

If risk aversion goes up, agents with high exposures have a higher demand for aggregate default risk 
protection and as a result there will be more risk-sharing in equilibrium. Given the improved risk reallocation, 
the dealer sector absorbs more risk from the customer sector. Dealers will trade at a higher price because 
of their higher average post-trade exposures. Customers will also trade at a higher price not only because 
risk aversion per se is higher but also because the average post-trade exposure of dealers increases by more 
than the decline in customers’ average post-trade exposure, due to their smaller number. This means that 
contracts between dealers and customers will be executed at higher prices on average. 

Risk aversion increases both dealer and customer markets’ average prices. However, it increases the 
average price more in the customer market than in the dealer market. An increase in aversion to aggregate 
default risk also increases the spread in prices across dealer versus customer trades. There are two distinct 
o↵setting e↵ects driving this result. First, there is the direct e↵ect of an increase in risk aversion on shadow 
prices of risk. More risk-averse agents have a higher shadow price of risk bearing for a given net exposure. 
Comparing the e↵ect on dealers versus customers, the fact that dealers are less exposed to the underlying 
asset than customers means that their shadow cost of risk bearing is less sensitive to changes in risk aversion. 
The e↵ect of higher risk aversion on shadow prices of risk increases average prices in the customer market 
by more than in the dealer market, due to imperfect risk sharing. The second e↵ect is more subtle and is 
dominated by the first one. The higher demand for risk sharing resulting from higher risk aversion implies 
that market participants become more similar in their post-trade exposures. Less dispersion in post-trade 
exposures implies less dispersion in the average prices observed in dealer versus customer markets. However, 
Proposition A3 shows that the first e↵ect dominates the second one. Thus, as risk aversion increases, the 
spread between the average price in dealer and customer markets widens. 

B Model Extensions 

B.1 Risk Aversion Heterogeneity 

In this section, we present a variation of our benchmark model where agents are heterogeneous in both risk 
their aversion and pre-trade exposures. Formally, agent i’s optimization problem is given by: 
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n nX X1↵i 2 2 2 max !i(1 µ) +  ij (Rij µ) (!i + zi) ij
zi,{ ij }n 2 2j=1 j=1 j=1 

s.t. ij = 0  if  gij = 0  
nX 

zi ij = 0, 
j=1 

From the first-order conditions, we can solve agent i’s optimization problem for agents’ bilateral and net 
positions: 

( ⇥ ⇤ 
1 2Rij µ ↵i(!i + zi) if gij = 1  

ij = (A18) 
0  if  gij = 0  

where P n 1 n 2X 
Ki j=1 gij (Rij µ) ↵i!i 

zi = ij = , (A19) 
+ ↵i 

2 
j=1 Ki 

Pnand Ki = j=1 gij . 
In this variant of the model, the market clearing conditions are the same as in the benchmark model and 

are given by: 

ij + ji = 0  8i, j = 1, .  . . ,  n.  (A20) 

As in the benchmark model, we assume no transaction costs between any two counterparties: 

Rij = Rji. 

If agents i and j can trade (i.e., gij = gji = 1), we can use their optimality conditions from Equation 
(A18) and market clearing condition from Equation (A20) to solve for the equilibrium price of a contract 
between agents i and j: 

" # 1 ↵i(!i + zi) +  1 ↵j (!j + zj ) ↵i(!i + zi) +  ↵j (!j + zj )2 2Rij µ = = . (A21) 1 1| {z } + 2 
contract premium 

If we substitute the contract premium (Equation A21) into the agents’ first-order condition (Equation 
A18), then whenever gij = 1  we  have:  

1 ⇥ ⇤ 12 2 
ij = Rij µ ↵i(!i + zi) = [↵j (!j + zj ) ↵i(!i + zi)]

2 

which means that agent i sells insurance to agent j (i.e., ij > 0) if, and only if, agent j is more exposed to 
default than agent i after trade and correcting for di↵erences in risk aversion, that is, ↵j (!j +zj ) > ↵i(!i +zi). 
The trade volume between two counterparties depends on the di↵erence of their post-trade exposures scaled 
by risk aversion and on the trading cost parameter, . 

The net positions, {zi}i, are determined in equilibrium. We can use Equations (A19) and (A21), and 
solve for equilibrium net positions. From Equation (A21), we have: 

h ↵i 
i↵j2Rij µ = (!i + zi) +  (!j + zj )

2 2 
n n iX X h ↵i ↵j2 gij (Rij µ) =  gij (!i + zi) +  (!j + zj )

2 2 
j=1 j=1 
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Pgij nUsing the same notation as in the benchmark model, let g̃ij = and Ki = j=1 gij , then  we have:  Ki 

n nX X 
2 gij (Rij µ) =  

1 2↵i(zi + !i)Ki +
1 

Ki↵j g̃ij (zj + !j )
2 2 

j=1 j=1 

We can rewrite Equation (A19) as follows: 

Pn1 2 
j=1 gij (Rij µ) ↵i!iKizi = 

+ ↵i 
2 

Ki 

nX 
gij (Rij µ) =  zi + ↵i 

2Ki + ↵i 
2!iKi 

j=1 

and have: 

nX 
2 zi + ↵i 

2Ki + ↵i 
2!iKi =

1 2↵i(zi + !i)Ki +
1 

Ki↵j g̃ij (zj + !j )
2 2 

j=1 
✓ ◆ n

1 1 X ↵jzi 1 +  + !i = (zi + !i) +  g̃ij (zj + !j ). 
Ki↵i 

2 2 2 ↵ij=1 

The system above then becomes: 

✓ ◆ n
2 X ↵jzi 1 +  = !i + g̃ij (zj + !j ) 8i = 1, . . . , n.  (A22) 

Ki↵i 
2 ↵ij=1 

The system of equations in (A22) holds in equilibrium and it pins down the equilibrium net positions. 
In matrix notation, the system of equations becomes: 

2 23 32 
K1↵1

2 
g̃11 ↵1 g̃12↵2 g̃1n↵n· · ·1 + 0 · · · 0 
↵1 ↵1 ↵1 

g̃21 ↵1 g̃22↵2 g̃2n↵n· · ·  ↵2 ↵2 ↵2 
.
.
.. . ..

.

. 
.
.
. 

666664 

777775 
z = ! + 

666664 

777775 

1 +  2 · · ·0 02K2↵2 (z + !).
.
.. . ..

.

. 
2 g̃n1↵1 g̃n2↵2 g̃nn↵n . . .  1 +  · · ·  2 ↵n ↵n 

0 ↵nKn↵n | {z }| {z } 
1 ⌘G⇤⌘⇤ 

1⇤ z = ! + G⇤(z + !), (A23) 

where z = [z1, . . . , zn]0 and ! = [!1, . . . ,!n]0 are column vectors of net positions and pre-trade exposures. 

Net positions as a function of pre-trades exposures. We can rearrange Equation (A23) and 
solve the system of equations for the equilibrium net positions and post-trade exposures: 

z = (I  ⇤G⇤) 1⇤(G⇤ I)! (A24) 

and 

z + ! = (I  ⇤G⇤) 1(I ⇤)!. (A25) 

As in the benchmark model, post-trade exposures are determined jointly in equilibrium. They depend on 
the network, risk aversion and trading cost parameters, and pre-trade exposures. 
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B.1.1 Equivalence result and dealer removal 

Next we show an equivalence result in which we can use either heterogeneity in risk aversion or pre-trade 
exposures to match observed net positions. We formalize this result in Proposition A4. The proposition 
states that for a given distribution of risk aversion parameters, we can find a distribution of pre-trade 
exposures that will result in a calibrated model that matches the net positions target by the model. In our 
benchmark model, we e↵ectively use this result by assuming homogeneous risk aversion parameters and we 
then back out pre-trade exposures by matching the empirically observed net positions. 

The second part of the proposition is crucial for the equivalence between pre-trade exposure and risk 
aversion. It states that for a given distribution of the pre-trade exposures, we can find a distribution of risk 
aversion parameters that will result in a calibrated model that matches the net positions target by the model. 
This result, however, requires additional assumptions in order to keep risk aversion parameters positive. 

Proposition A4. Part 1: For a given distribution of risk aversion parameters, a given average average 
pre-trade exposure (!) and trading cost parameter ( ), and a given target for net positions to be matched by 
the model, there is a distribution of pre-trade exposures that result in a calibrated model with model-implied 
net positions matching the targeted net positions. 

Part 2: For a given distribution of pre-trade exposures, a given average risk aversion (↵) and  trading  
cost parameter ( ), and a given target for net positions to be matched by the model, if (i) A0 A2 is 

1 1
nonsingular, (ii) [A0 A2] A1 has only positive entries, and (iii) the sum of all elements in [A0 A2] A1 

are lower than n↵, where A0, A1 and A2 are defined in Equation (A30), then there is a distribution of risk 
aversion parameters that result in a calibrated model with model-implied net positions matching the targeted 
net positions. 

Proof. Part 1: Pre-trades exposures as a function of net positions. Notice that the matrix (G⇤ I) 
is singular because because its rank is less than n given that each row in G⇤ sum to one. Hence, we cannot 
use directly Equation (A24) to solve for pre-trade positions (!’s) as a function of net positions (z’s). To 
overcome this issue, we rearrange Equation (A22) for i = 1, . . . , n  1 as follows: 

✓ ◆ n
2 X g̃ij ↵jzi 1 +  = !i + (zj + !j )

Ki↵i 
2 ↵ij=1 

n 1X g̃ij ↵j g̃in↵n = !i + (zj + !j ) +  (zn + !n)
↵i ↵ij=1 0 1 

n 1 n 1X g̃ij ↵j g̃in↵n 
X 

= !i + (zj + !j ) +  @n! (zj + !j )A 
↵i ↵ij=1 j=1 

n 1 X 

where the third step uses that fact that !j = n! and that in equilibrium = 0, which imply: 

= !i + 
j=1 

g̃ij ↵j 

↵i 

g̃in↵n 

↵i 

g̃in↵n(zj + !j ) +  n!,
↵i 

(A26) 

Pn Pn 
j=1 j=1 zj 

n 1X 
zn = zj (A27) 

j=1 

n 1X 
!n = n! !j . (A28) 

j=1 
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0 0 

0 

In matrix notation, Equation (A26) becomes: 

2
1 +  1 · · ·  

K1 ↵1
2 

0
666664 

777775 

1 +  1 · · ·  
K2↵2

2 

.

.

.. . ..
.
. 

z = ! 

1 . . .  1 +  2Kn 1↵n 1 {z 
1⌘⇤ 

0 
| } 

2 23 3g̃11↵1 g̃1n↵n g̃12↵2 g̃1n ↵n g̃1,n 1↵n 1 g̃1n↵n· · ·  g̃1n↵n 
↵1 ↵1 ↵1 ↵1 ↵1 ↵1 

g̃21↵1 g̃2n↵n g̃22↵2 g̃2n ↵n · · ·  
g̃2,n 1↵n 1 g̃2n↵n 

↵2 ↵2 ↵2 ↵2 ↵2 ↵2 
.
.
.. . ..

.

. 
.
.
. 

↵16666664 

7777775 

(z + ! ) +  n! 

666664 

777775 

g̃2n↵n 
↵2 
.
.
. 

+ , 

g̃n 1,1↵1 g̃n 1,n ↵n g̃n2 ↵2 g̃n 1,n↵n g̃n 1,n 1↵n 1 g̃n 1,n↵n g̃n 1,n↵n · · ·  ↵n 1 ↵n 1 ↵n 1 ↵n 1 ↵n 1 ↵n 1 ↵n 1 {z| }| {z } 
⌘B ⌘C 

where z = (z1, z2, . . . , zn 1)
0 is a n 1 by 1 column vector of net positions and ! = (!1,!2, . . . ,!n 1)

0 is 
a n 1 by 1 column vector of pre-trade exposures. We can rearrange the system of n 1 and solve for ! as 
a function of z as follows: 

1⇤ z = ! + B (z + ! ) +  C 
⇥� ⇤ 

! = (I B) 1 B ⇤ 1 z + C . (A29) 

Taking the model parameters as given, Equations (A27), (A28), and (A29) allow us to define pre-trade 
exposures that match observed net positions in the data. 

Part 2: Risk aversion parameters as a function of net positions and pre-trade exposures. 
Starting from Equation (A22): 

✓ ◆ n
2 X ↵jzi 1 +  = !i + g̃ij (zj + !j )

Ki↵i 
2 ↵ij=1 

nX2 
zi = (zi + !i)↵i + g̃ij (zj + !j )↵j

Ki 
2 

j=1 

nX2 
(zi + !i)↵i = zi + g̃ij (zj + !j )↵j

Ki 
2 

j=1 

n 1X2 
(zi + !i)↵i = zi + g̃ij (zj + !j )↵j + g̃i,n(zn + !n)↵n

Ki 
2 

j=1 2 3 
n 1 n 1X X 

(zi + !i)↵i = zi 
K 
2 

i 
2 

+ g̃ij (zj + !j )↵j + g̃i,n(zn + !n) 4n↵ ↵j 5 
j=1 j=1 

n 1X2 
(zi + !i)↵i = g̃i,n(zn + !n)n↵ + zi + [g̃ij (zj + !j ) g̃i,n(zn + !n)] ↵j ,

Ki 
2 

j=1 

Pn1where ↵ = ↵j . n j=1 
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In matrix notation, we have: 

23232 
z1 + !1 0 . . .  0 ↵1 

2 g̃1,n(zn + !n)n↵ + z1 K1
2 

266664 

0 z2 + !2 . . .  0 
. .. . . . . . . 

66664 

77775 

↵2 

. . . 

77775 
= 

66664 

77775 

g̃2,n(zn + !n)n↵ + z2 K2
2 

. . . 
2 g̃n 1,n(zn + !n)n↵ + zn 10 . . .  zn 1 + !n 1 ↵n 1 Kn 1| {z |} {z |} {z } 

A0 ↵ A1 

(A30) 
3232 ↵1 

g̃11(z1 + !1) g̃1,n(zn + !n) . . .  g̃1,n 1(zn 1 + !n 1) g̃1,n(zn + !n) 
. .. 

66664 

77775 

↵2 

. . . 

664 
775+ . . . .. . 

g̃n 1,1(z1 + !1) g̃n 1,n(zn + !n) . . .  g̃n 1,n 1(zn 1 + !n 1) g̃n 1,n(zn + !n)
{z ↵n|

|
} 1 

{z }A2 
↵ 

If A0 A2 is not singular, we have: 

A0↵ = A1 + A2↵ 
1↵ = [A0 A2] A1 (A31) 

Notice that, in addition of having A0 A2 nonsingular, the model requires ↵i > 0 for every agent i so 
that agents’ objective function is always concave and its first-order conditions are valid. These conditions 

1translate into [A0 A2] A1 having only positive entries and its sum being lower than n↵. 

B.1.2 Calibration 

To calibrate the heterogeneous risk aversion model, we choose ↵ and to match the spreads Rd and Rc Rd. 
We set agents’ risk aversion according to Equation (A31). However, we need to know the net positions of 
all agents as well as their pre-trade exposures. We observe dealers’ net positions positions in the data. 
For costumers, we observe only their net notional position in the CDS market but not their equity value. 
We assume customers net notional positional is proportional to the equity value, that is, we assume that 
customers have the same net notional per unit of equity in absolute value. In the model, this translates 
into having |zj | = |zk| for any two customers j and k, and we can infer the absolute values of customers net 
positions from the fact the all net positions sum to zero. 

Finally, we need to define agents’ pre-trade exposures. If we assume identical pre-trade exposure for 
every agents, that is, !i = ! for every agent i, then condition 2 of Part 2 of Proposition A4 is violated when 
trying to match the data. Specifically, the risk aversion parameter implied by Equation (A31) is negative 
for the largest net seller dealer. Hence, heterogeneity in risk aversion alone is unable to explain net positions 
observed in the data. 

To overcome the inability of the heterogeneous risk aversion model to match the empirically observed net 
positions of dealers, we singled out the largest net seller dealer and adjust its pre-trade exposure. Formally, 
let the largest net seller dealer be agent 1. We reduce its pre-trade exposure in order to satisfy the conditions 
in Part 2 of Proposition A4. We keep the average pre-trade exposure unchanged by equally adjusting other 
agents pre-trade exposure. For j = 2, . . . , n, we  have  !j = (n! !1)/(n 1). We solve the model for various 
values of !1, all which will satisfy proposition conditions. We report results in Table A1. 

Across columns, we vary the pre-trade exposure of the largest net seller dealer from 2, which is the 
highest value of !1 that satisfy the propositions conditions, to 30. In each column, we matches both Rd and 
Rc Rd to the values observed in the data. Panel A shows calibrated parameters. Trading cost parameter 
remains unchanged across columns. However, the average risk aversion of all agents declines as pre-trade 
exposure of dealer 1 decreases. With a lower pre-trade exposure, dealer 1 becomes more willing to sell 
protection to other market participants. Each calibration also adjusts agents’ risk aversion to match their 
net positions. This implies a lower overall risk aversion to make other agents less willing to buy protection 
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from dealer 1. 
In Panel B, we report the largest net seller dealer removal e↵ects on prices and risk allocation. The e↵ect 

of dealer prices are nearly identical to the one observed in our benchmark model. They vary from 31.37 to 
31.38 basis points, while this e↵ect is 31.31 basis points in our baseline model. The e↵ect on customer prices 
is also nearly identical, varying from 15.81 to 15.82 basis points. This e↵ect in our baseline model is 15.79 
basis points. Additionally, the e↵ects on risk allocation are identical to the baseline model despite having 
larger variation in dealers’ pre-trade exposures. The change in dealers’ pre-trade exposure vary from 0.21 
to 2.22, whereas it is 0.44 in our benchmark model. However, the change in dealers’ average net position 
is the same as in our benchmark model at 0.138. That is, the dealer being removed changes dealers’ 
average pre-trade exposures significantly but the risk reallocation after the dealer removal is similar to the 
benchmark model. This confirms that risk aversion acts as a substitute for pre-trade exposures that delivers 
similar dealer removal e↵ects on prices. 

B.2 Trading Costs Heterogeneity 

In this section, we present a variation of our benchmark model where trading cost is specific to each coun-
terparty type. Formally, agent i’s optimization problem is given by: 

n nX X↵ 12 2 2 max !i(1 µ) +  ij (Rij µ) (!i + zi) ij ij
zi,{ ij }n 2 2j=1 j=1 j=1 

s.t. ij = 0  if  gij = 0  
nX 

zi ij = 0, 
j=1 

where x are the state variables. 
From the first-order conditions, we can solve agent i’s optimization problem for agents’ bilateral and net 

positions: 
( ⇥ ⇤ 

1 2Rij µ ↵(!i + zi) if gij = 1  
ij = ij (A32) 

0  if  gij = 0  

where P1 n gij 2P µ) ↵!in n gij j=1 (Rij 

zi = ij = 
�ij (A33) 

X 
j=1 

ij 

1 2P + ↵� n gijj=1 
j=1 �ij 

Market clearing conditions are the same as in the benchmark model and are given by: 

ij + ji = 0  8i, j = 1, .  . . ,  n.  (A34) 

As in the benchmark model, we assume no transaction costs between any two counterparties: 

Rij = Rji. 

If agents i and j can trade (i.e., gij = gji = 1), we can use their optimality conditions from Equation 
(A32) and market clearing condition from Equation (A34) to solve for the equilibrium price of a contract 
between agents i and j: 

" #
1 1 (!i + zi) +  (!j + zj )
ij ji 2 ji(!i + zi) +  ij (!j + zj ) 2Rij µ = ↵� = ↵� . (A35) 1 1| {z } + ij + ji

ij ji
contract premium 

If we substitute the contract premium (Equation A35) into the agents’ first-order condition (Equation 
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A32), then whenever gij = 1 we get: 

1 ⇥ 2
⇤ ↵� 2 

ij = Rij µ ↵(!i + zi) = [(!j + zj ) (!i + zi)] 
ij ij + ij 

which means that agent i sells insurance to agent j (i.e., ij > 0) whenever agent j is more exposure to 
default than agent i after trade, that is, !j + zj > !i + zi. The trade volume between two counterparties 
depends on the di↵erence of their post-trade exposures scaled by risk aversion and on the sum of their trading 
cost parameters. 

The net positions, {zi}i, are determined in equilibrium. We can use Equations (A33) and (A35) to solve 
for equilibrium net positions: 

 
2 ji↵ ij ↵ Rij µ = (!i + zi) +  (!j + zj ) 

ij + ji ij + ji 
n n X gij 2 

X gij ji↵ ij ↵ (Rij µ) =  (!i + zi) +  (!j + zj ) . 
ij ij ij + ji ij + jij=1 j=1 

Pgij 1 n gijLet gij = and Ki = , then:  
ij + ji Ki j=1 ij + ji 

n n nX X Xgij ji 2(Rij µ) =  2(zi + !i) Kj ↵gji + Ki↵gij (zj + !j ). 
ij ijj=1 j=1 j=1 

Using: 0 1 
n n nX X Xgij 2 gij gij(Rij µ) =  zi @1 +  ↵� A + ↵� 2!i 

ij ij ijj=1 j=1 j=1 

from Equation (A33) and using the fact that gij = gji, we have:  

0 1 
n n n nX X X X 

2 gij gij ji 2 zi @1 +  ↵� A + ↵� 2!i = 2(zi + !i) Kj ↵gji + Ki↵gij (zj + !j ) 
ij ij ijj=1 j=1 j=1 j=1 

0 1 
n n n nX X X Xgij 1 gij jizi @ + 

2↵ 
A + !i = (zi + !i) Kj gji + Kigij (zj + !j ) 

ij ij ijj=1 j=1 j=1 j=1 
0 1 0 1 

n n n n nX X X X Xgij ji 1 gji jizi @ Kj gji + A = !i @ Kj gji 
A + Kigij (zj + !j ).2↵ij ij ij ijj=1 j=1 j=1 j=1 j=1 

Notice that 

n n n ✓ ◆ n nX X X X Xgij ji gij ji gij ij gijKj gji = 1 = = = Ki. 
ij ij ij ij + ji ij ij + ji ij + jij=1 j=1 j=1 j=1 j=1 

The system of equation can be simplified to: 

✓ ◆ nX1 
=zi Ki + 

↵� 2 
!iKi + Kigij (zj + !j ) 

j=1 
✓ ◆ nX1 

zi 1 +  = !i + gij (zj + !j ) 8i = 1, . . . , n  (A36) 
Ki↵� 2 

j=1 
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0 0 
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In matrix notation, we have: 
32 321 +  1 · · ·  g11 g12 · · ·  g1n2K1 ↵� 

1 +  1 · · ·  
6666664 

K2↵� 2 

.

.

.. . ..
.
. 

7777775 

z = ! + 
66664 

· · ·g21 g22 g2n 
.
.
.. . ..

.

. 
.
.
. 

77775 
(z + !) 

1 g g · · ·  g. . .  1 +  n1 n2 nn20 
Kn↵� | {z }| {z }

⌘G⇤ 
1⌘⇤ 

1⇤ z = ! + G⇤(z + !), (A37) 

where z = [z1, . . . , zn]0 and ! = [!1, . . . ,!n]0 are column vectors of net positions and pre-trade exposures. 
We can and rearrange Equation (A37) and solve the system of equations for the equilibrium net positions 
and post-trade exposures: 

z = (I  ⇤G⇤) 1⇤(G⇤ I)! (A38) 

and 

z + ! = (I  ⇤G⇤) 1(I ⇤)!. (A39) 

As in the benchmark model, post-trade exposures are determined jointly in equilibrium. They depend on 
the network, risk aversion and trading cost parameters, and pre-trade exposures. 

Notice that the matrix (G⇤ I) is singular because because its rank is less than n given that each row 
in G⇤ sum to one. Hence, we cannot use directly Equation (A38) to solve for pre-trade positions (!’s) as a 
function of net positions (z’s). To overcome this issue, we rearrange Equation (A36) for i = 1, . . . , n  1 as 
follows: 

✓ ◆ nX1 
zi 1 +  = !i + gij (zj + !j )

Ki↵� 2 
j=1 

n 1X 
= !i + gij (zj + !j ) +  gin (zn + !n) 

j=1 0 1 
n 1 n 1X X 

= !i + gij (zj + !j ) +  gin 
@n! (zj + !j )A 

j=1 j=1 

n 1X⇥ ⇤ 
= !i + (zj + !j ) +  ginn!gij gin 

j=1 

P Pn nwhere the third step uses that fact that !j = n! and that in equilibrium j=1 zj = 0, which imply: j=1 

n 1X 
zn = zj (A40) 

j=1 

n 1X 
!n = n! !j (A41) 

j=1 
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0 0 
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In matrix notation this system of equations becomes: 

32 
1 +  1 · · ·  

K1↵� 2 

0 
6666664 

7777775 

1 +  1 · · ·  
K2 ↵� 2 

.

.

.. . ..
.
. 

z = ! 

. . .  1 +  1 
Kn 1 ↵� 2 

{z 
1⌘⇤ 

0 
| } 

3232 
g1n g1n · · ·  g1n g1ng11 g12 g1,n 1 

66664 

g2n g2n · · ·  g2ng21 g22 g2,n 1 
.
.
.. . ..

.

. 
.
.
. 

77775 
(z + ! ) +  n! 

66664 

77775 

g2n 
.
.
. 

+ , 

g g g g · · ·  g g gn 1,1 n 1,n n2 n 1,n n 1,n 1 n 1,n{z 
1,nn | |} {z } 

⌘B ⌘C 

where z = (z1, z2, . . . , zn 1)
0 is a n 1 by 1 column vector of net positions and ! = (!1,!2, . . . ,!n 1)

0 is 
a n 1 by 1 column vector of pre-trade exposures. We can rearrange the system of n 1 and solve for ! as 
a function of z as follows: 

1⇤ z = ! + B (z + ! ) +  C 

! = (I B) 1 ⇥� 
B ⇤ 1 z + C 

⇤ 
. (A42) 

Taking the model parameters as given, Equations (A40), (A41), and (A42) allow us to define pre-trade 
exposure to match observed net positions in the data. 

B.2.1 Di↵erent trading costs for dealers and customer trades 

Core-periphery Network Next we derive a closed-formed expression for the average net position 
of dealers, namely zd, under a core-periphery network. Let us assume that ij depends on whether the 
counterparties are dealers or not. Specifically, let ij be specified as follows: 

( 

( 

X 

d if i and j are both dealers 
ij = , (A43) 

c otherwise 

which implies 

n nd + n nd for i = 1, . . . , nd (dealers) 2gij 2Ki = (A44) d c= nd +1 
ij + ji for i = nd + 1, . . . , n  (customers) 2j=1 c 

= 

8 
>>< 

>>: 

gij 1 i and j are dealers 
d+ d Kigij 1 gij 1 
c+ i and j are customers (A45) =gij Kiij + ji Ki 

c 
gij 1 dealer and customer 
c+ c Ki 

For dealer i, Equation (A36) becomes: 

✓ ◆ Xn 

zi 1 +  = !i + gij (zj + !j ) 8i = 1, . . . , nd 
Ki↵� 2 

j=1 

1 

✓ ◆ 
1 Xn 

ij + jij=1 

gijKi + = Ki!i + (zj + !j )zi 2↵� 

Xn 

ij + jij=1 
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 nd nX X1 nd n nd 1 1 
zi = + (zi + !i) +  (zj + !j ) +  (zj + !j )
↵� 2 2 d 2 c 2 d 2 cj=1 j=nd+1  
1 nd n nd nd n nd zi = + (zi + !i) +  (zd + !d) +  (zc + !c) , (A46) 
↵� 2 2 d 2 c 2 d 2 c 

and taking average over dealers, we have: 
 

1 nd n nd nd n nd zd = + (zd + !d) +  (zd + !d) +  (zc + !c)
↵� 2 2 d 2 c 2 d 2 c 

1 n nd n nd zd = (zd + !d) +  (zc + !c)
↵� 2 2 c 2 c ✓ ◆ 
1 n nd n nd nd n nd zd = (zd + !d) +  zd + ! !d
↵� 2 2 c 2 c n nd n nd n nd 

1 n nd 1 
zd = (zd + !d) +  ( ndzd + n! nd!d)
↵� 2 2 c 2 c 

1 
2 czd = (n nd) (zd + !d) ndzd + n! nd!d2↵� 

1 
2 czd = n (zd + !d) +  n!

2↵� 
! !d zd = 
2 c 

, (A47) 
+ 12n↵� 

which means that zd does not depends on d. 
To get some intuition behind this result, let us write Equation (A36) as follows: 

✓ ◆ nX1 
zi 1 +  = !i + gij (zj + !j ) 8i = 1, . . . , nd 

Ki↵� 2 
j=1 

n
Ki↵� 2 + 1  X 

zi = !i + gij (zj + !j )
Ki↵� 2 

j=1 

nX 
zi = d!i + d gij (zj + !j ) 

j=1 

nX 
zi + !i = 1 d !i + d gij (zj + !j ) , (A48) 

j=1 

Kd ↵� nd ndwhere d = 
2 

and Kd = 2 + n 
2 . 

Kd ↵� 2+1 d c 

When d decreases, then d increases because Kd increases. This has di↵erent implications for risk 
sharing from the perspective of dealer i. On the one hand, the post-trade exposure of dealer i depends less 
on its pre-trade exposure. Intuitively, as dealer i faces lower trading costs, there is more risk-sharing as it 
becomes cheaper to trade and, as a result, its post-trade exposure moves away from its pre-trade exposure 
to become more similar to its trading counterparties. On the other hand, the increase in risk sharing is Pnasymmetric between dealer i’s counterparties. The term j=1 gij (zj + !j ) is a weighted average of dealer i 
trading counterparties. As d decreases, this average puts more weight on dealers’ post-trade exposure and 
less weight on customers’ post-trade exposures. This is because it is cheaper to trade with dealers when d 

decreases but not with customers. As a result, dealer i will share more risk with other dealers. When we 
average across dealers, the increase in risk sharing is concentrated among them and d has no e↵ect on their 
average net position and no e↵ect on how much protection they sell to customers. 

Equation (A47) also has implications for the calibration of c and ↵. Notice that the average prices 
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between dealers is given by: 

Rd = µ + ↵� 2(zd + !d), (A49) 

while the average prices between customers and dealer is given by: 
✓ ◆ 

2 1 2 1 ndzd ! nd!dRc = µ + ↵� (zd + !d + zc + !c) =  µ + ↵� zd + !d + , (A50) 
2 2 n nd n nd 

! nd !d nd zdwhere the second equality uses the fact that !c = and zc = . n nd n nd 

Given that we observe zd, Rd, and Rc, and we normalized ! to one, we can solve Equations (A47), 
(A49), and (A50) for ↵, c, and !d. Similarly, we can compute dealer removal e↵ects by changing !d. We  
still need to infer the model-implied value of !i of the dealer being removed. We can use Equation (A46) to  
write !i as a function of net positions and other parameters of the model. Upon the removal of a dealer, we 
compute !d and the new equilibrium average net position of dealer according to Equation (A47). Then we 
use Equations (A49) and (A50) to assess the e↵ects on prices. 

Proposition A5. In the model with heterogeneous trading costs, d has no e↵ect on the average net positions 
of dealer (zd), the average dealer prices (Rd), and the average customer prices (Rc). Furthermore, let ↵⇤ 

⇤
and be the parameters that make the average prices n the heterogeneous trading cost model to match an c 
specific target. These values are identical to the values of ↵ and that match the same targeted prices under 
the benchmark model. 

Proof. Equations (A47), (A49) and (A50) show that d has no e↵ect on the average net positions of dealer 
(zd), the average dealer prices (Rd), and the average customer prices (Rc). 

For the second part of the proposition, notice that c = d, we have that the heterogeneous trading 
cost model is identical identical to our benchmark framework. Therefore the calibrated parameters would 
be identical in this case. Given that d does not a↵ect the equilibrium average prices in both dealer and 
customer markets, we have that d does not a↵ect the calibrated parameters. 

Complete Network Average Prices Next, we compute the average price under the assumption of 
a complete trading networks—that is, gij = 1 for every i and j. In this case, the previous derivations of 
average net positions and average prices among dealers and customer (Equations (A47), (A49) and (A50)) 
remain unchanged. These derivations rely on the assumption that dealers can trade with all other agents, 
that is, gij = 1 for every j whenever i is a dealer. Therefore, in a complete network, the average net position 
among dealers is given by Equation (A47), and average prices in dealer-dealer and customer-dealer trades 
are given by Equations (A49) and (A50). For customer-customer trades, the average price is given by: 

✓ ◆ 
2 ndzd ! nd!dRcc = µ + ↵� 2(zc + !c) =  µ + ↵� + . (A51) 

n nd n nd 

Finally, we can infer the average price in the economy from the average prices in dealer-dealer, customer-
dealer and customer-customer trades: 

2n Rd + 2nd(n nd)Rc + (n nd)2RccdRComplete Network = , (A52) 
n2 

where Rd, Rc and Rcc are defined in Equations (A49), (A50) and (A51). 

C Algorithm to Classify Market Participants as Dealers 

In this section, we describe a minimum-distance algorithm that we use to determine the size of the empirical 
core in the CDS market. The algorithm uses the fact that a pure core-periphery network requires that all 
dealers should be connected to each other and to every customer. Moreover, a pure core-periphery network 
stipulates that customers should be connected to all dealers and no one else. Based on these two observations, 
we select the number and identity of dealers and assign remaining agents to the periphery as follows: 
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1. Choose a threshold number of connections, m, above which a counterparty will be classified as a 
dealer. If the number of connections is below this threshold, we label that agent as a customer. Define P 
Di,t ⌘ Gi,j,t as counterparty i’s degree on date t. In words, Di,t just counts the number of i’sj 
trading partners. For a given threshold m, agent i is a dealer if Di m and i is a customer otherwise. 

2. For each threshold m and its implied definition of dealers and customers, we construct a counterfactual 
network that is perfectly core-periphery, that is, a network in which everyone is connected to all dealers 

CP (m)but not to other customers. Let this counterfactual core-periphery network be GCP (m) = (gij )ij . 
CP (m)Formally, g = 1 for every i, and for i =6 jii 

( 
CP (m) 1  if  Dj,t m 

g = .ij 0 otherwise 

3. We then compute the number of connections that should exist under a perfect core-periphery network 
but do not exist in the data, as well as the number of connections that do not exist in the data but 
should exist under a perfect core-periphery network. This is the number of elements of t that are not 
consistent with a core-periphery network. We then minimize over choices of m the average number 
of connections inconsistent with a core-periphery relative to the total number of connections under a 
perfect core-periphery network. Hence, the minimization problem is given by: 

PN CP (m) 
1 X j=1 Gi,j,t ij 

N g 
min ,PN CP (m)m N 

i=1 j=1 gij 

where N is the total number of counterparties. 

Empirically, the algorithm generates a counterparty network with 14 dealers. Furthermore, in the In-
ternet Appendix we show for robustness that our selection algorithm consistently identifies the same set of 
dealers even if we focus on subsamples of our data. 

clearpage 
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Table A1: Dealer Removal E↵ects with Heterogeneous ↵ 

(1) (2) (3) (4) (5) (6) 

Panel A: Calibrated Parameters and Equilibrium Summary 

7.983 7.983 7.983 7.983 7.983 7.983 

Avg. ↵ 4.55 4.39 4.36 4.33 4.30 4.24 

!1 2 5 10 15 20 30 

Panel B: Dealer Removal E↵ects 

#Rd 31.38 31.38 31.37 31.37 31.37 31.37 

#Rc 15.82 15.82 15.82 15.82 15.82 15.81 

#!d 0.21 0.43 0.79 1.14 1.50 2.22 

#zd 0.138 0.138 0.138 0.138 0.138 0.138 

Notes: This  table  reports  di↵erent  calibration  of  the  model  with  heterogeneous  risk  aversion  parameters.  We  assume  all  agents  
have the same pre-trade exposure, except for the largest net seller dealer (agent 1). That is, !j = (n! !1)/(n 1)8j = 2, . . . , n. 
We solve the model for various values of !1, all  which  will  satisfy  the  conditions  in  Proposition  A4. Parameters  and the 
average risk aversion are calibrated to match the average dealer and customer prices at 133 bps and 138.12 bps, respectively. 
Across columns, we vary the pre-trade exposure of the largest net seller dealer from 2, which is the highest value of !1 that 
satisfy the conditions in Proposition A4, to  30. Panel A shows calibrated parameters, and Panel B shows dealer removal e↵ects 
on dealers’ average prices, customers’ average prices, dealers’ average pre-trade exposure and dealers’ average net positions. See 
Section B.1.2 for details. Source: Authors’ analysis, which uses data provided to the OFR by the Depository Trust & Clearing 
Corporation. 
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