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Abstract

We show that when only a few investors contribute a substantial portion of a fund’s equity,
the probability of large liquidity-driven fund outflows increases because investors’ idiosyncratic
liquidity shocks are not diversified away. Using confidential regulatory filings, we find the
five largest investors on average own 50% of a hedge fund. Consistent with our predictions,
we confirm that high investor concentration hedge funds are more likely to experience large
liquidity-driven outflows. Such funds hold more precautionary cash and implement other port-
folio adjustments that help absorb outflows, but result in lower risk-adjusted returns. We find
no evidence that hedge funds with a concentrated investor base impose longer share restrictions.
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SCOPE OF RESEARCH

The research and analysis conducted in this paper is in accordance with the mandate set forth
in the Dodd-Frank Wall Street Reform and Consumer Protection Act of 2010 that the Office of
Financial Research study and monitor potential threats to financial stability and issues related to
systemic risk in U.S. financial markets.
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1 Introduction

A large literature analyzes hedge funds’ investment decisions and portfolio risk (see, for example,

Fung and Hsieh (1997, 2001, 2004); Agarwal and Naik (2004); Patton and Ramadorai (2013)).

However, unlike the risks inherent in hedge fund investments, the risks inherent in hedge fund

investor compositions have received relatively little attention. This paper helps fill this gap. We

use a novel dataset of hedge fund regulatory filings to investigate the risks to hedge funds from

high investor concentration (IC), when a handful of large investors own a substantial portion of a

fund’s net asset value (NAV). In our data, 50% of a hedge fund’s NAV is on average held by the

largest five investors, suggesting that investor concentration risk is particularly salient for hedge

funds relative to other asset managers.

We first illustrate in a simple theoretical framework that when a hedge fund’s investor base is

highly concentrated, it is fragile because the fund is not diversified against the effect of idiosyncratic

liquidity shocks to individual investors. Consequently, the fund is more likely to face large “liq-

uidity” outflows.1 These liquidity outflows, unlike “fundamental” outflows, are orthogonal to the

hedge fund’s fundamentals like past performance or portfolio holdings. This mechanism is related

to the stock price fragility studied in Greenwood and Thesmar (2011), who define an asset as fragile

if it is “susceptible to non-fundamental shifts in demand” from investors and show that a stock

can be fragile due to concentrated ownership.2 Our analysis differs in that the asset in question,

the hedge fund, can take into account the risk of non-fundamental shifts in investor demand and

mitigate the fragility introduced by a high investor concentration. If and how hedge funds account

for a concentrated investor base is important for hedge fund investors and for assessing financial

stability risks that hedge funds could pose.3

A high-IC hedge fund faces a trade-off between the costs of large liquidity outflows and the

costs of the portfolio adjustments that account for the outflow risk. Being forced to sell assets

to generate cash and absorb large outflows can lead to substantial losses for a hedge fund in two

ways. First, outflows can force a hedge fund to obtain cash by exiting an arbitrage trade prior to

convergence, thus realizing losses. The convergence of such trades can fail to materialize for an

extended period of time and the trades can even diverge further before converging, making arbitrage

inherently risky if early exit could be necessary (see, for example, De Long, Shleifer, Summers, and

Waldmann (1990); Shleifer and Vishny (1997); Hombert and Thesmar (2014)).4 Second, for hedge

1Examples of such exogenous liquidity shocks to investors include an institutional investor such as a fund of hedge
funds facing outflows or a high net worth investor experiencing sudden large personal expenditures.

2In a related paper, Ben-David, Franzoni, Moussawi, and Sedunov (2018) show that concentrated institutional
ownership of stocks can lead to an increase in volatility and price inefficiency.

3Regulatory reforms that take into consideration investor concentration risk in asset managers include the Invest-
ment Company Liquidity Risk Management Programs rule of the Securities and Exchange Commission that requires
open-end mutual funds and exchange-traded funds to establish a liquidity risk management program, which, among
other factors, must consider the “fund’s shareholder ownership concentration,” because the fund “could experience
considerable cash outflows from redemptions by a single or small number of shareholders.”[SEC (2016), p. 81]. The
regulation does not cover hedge funds.

4Prime examples are the bet by Long-Term Capital Management on the convergence of the stock prices of Royal
Dutch and Shell described in Lowenstein (2000) and Tiger Management’s failed shorting of technology stocks during
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funds that invest in illiquid assets, being forced to sell such assets quickly can lead to losses due to

price impact.

Our framework predicts that a hedge fund with a high investor concentration will hold higher

levels of precautionary cash to address the risk of outflows if the hedge fund is willing to pay the

associated liquidity premium. Such precautionary cash holdings allow the hedge fund to accommo-

date large outflows and avoid losses from forced asset sales. We test these hypotheses empirically:

(i) High-IC funds have a higher likelihood of liquidity outflows (i.e., flows orthogonal to a hedge

fund’s performance); (ii) High-IC funds hold more precautionary cash and make other portfolio

adjustments to account for the higher likelihood of large outflows due to idiosyncratic investor

shocks; (iii) These adjustments are costly and result in lower risk-adjusted returns. We find robust

evidence for all three predictions. We further examine the frictions that can cause these effects to

persist and rule out alternative explanations.

To measure the investor concentration of a hedge fund, we use confidential Form PF filings

data reported to the Securities and Exchange Commission (SEC) starting in 2012. Large hedge

funds report the proportion of the fund’s equity owned by the top five investors. This “five-investor

concentration ratio” of a hedge fund’s investor base is on average 50% in our sample. Our sample

of large hedge funds, which comprises $1.8 trillion in aggregate NAV at the end of 2017, is well

suited for our analysis.5 The Long-Term Capital Management crisis of 1998 has shown the risks

that a large hedge fund can pose to financial stability. Additionally, because Form PF filing is

mandatory, we avoid self-selection and reporting issues that are known to exist in commercial

hedge fund databases (see, for example, Bollen and Pool (2008, 2009) and Patton, Ramadorai, and

Streatfield (2015)).6

To test the first prediction of our framework, we separate the liquidity outflows from the total

net flows that we estimate from the data and use a logistic regression model to test if lagged

investor concentration predicts a higher probability of large liquidity outflows in the next quarter.

Our results support this hypothesis. High-IC hedge funds are 1.5-2.0 times more likely to experience

large liquidity outflows.

High-IC hedge funds do indeed hold more cash relative to low-IC hedge funds, which sup-

ports the second prediction of our framework. The differences are economically significant. A one

standard deviation (22 percentage points) increase in investor concentration is associated with a 3

percentage point increase in the hedge fund’s cash relative to the hedge fund’s NAV. This increase is

a substantial fraction of the average and median cash holdings of 15% and 7% of NAV, respectively.

While holding precautionary cash helps hedge funds absorb outflows without selling assets,

holding cash is also costly. We expect that the larger portfolio share of precautionary cash for

high-IC hedge funds, together with the reduction in long-term arbitrage trades and the larger share

the dot-com boom (Brunnermeier and Nagel (2004)).
5The total NAV of all the hedge funds that file Form PF, including smaller hedge funds that file a pared down

version of the form at an annual frequency, was $3.9 trillion at the end of 2017: https://www.sec.gov/divisions/
investment/private-funds-statistics.shtml.

6A comparison of the data from Form PF and the Thomson Reuters Lipper TASS Database (a commercially
available hedge fund database) can be found in the Online Appendix.
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of liquid assets holdings, have a negative effect on the funds’ risk-adjusted returns. Confirming this

hypothesis, we find that the risk-adjusted returns of high-IC hedge funds, estimated based on the

Fung and Hsieh (2004) seven factor model, are significantly lower than those of low-IC hedge funds.

This effect is economically significant: a one standard deviation increase in investor concentration is

associated with a decrease in a hedge fund’s annualized unlevered and levered risk-adjusted returns

of around 110 and 130 basis points, respectively.

Our results are based on cross-sectional variation across hedge funds, rather than within-fund

variation, because the investor concentration measure fluctuates little for a hedge fund through

time. However, we also consider two portfolio adjustments in addition to holding more cash and

confirm our findings. First, we find that high-IC hedge funds refrain from investing in risky arbitrage

trades where the mispricing can worsen further before converging to the fundamental value of the

asset. The volatility of long-term hedge fund returns acts as the proxy for risky arbitrages trades as

in Hombert and Thesmar (2014). Second, we document that high-IC hedge funds generally invest

in more liquid assets in addition to holding more cash, as these assets can be sold with little price

impact in the case of large liquidity outflows.

We include strategy fixed effects in all of our regression specifications. Further, our results

are robust to the inclusion of the financing constraints, leverage, size, flows, performance, and

manager stake of a hedge fund as controls in our regression specifications. Our results hold both

for subsamples of hedge funds for which the majority of investors are institutional and for hedge

funds for which the majority of investors are individuals. Also, the documented effects of investor

concentration are not driven by hedge funds with a very small total number of investors such as

certain family offices.

High-IC hedge funds could also use gates and longer share restrictions to help mitigate the risk

of liquidity outflows due to a high investor concentration. However, we find that gates and share

restrictions are surprisingly not correlated with investor concentration.7 A potential explanation for

this finding is that share restrictions and gates are regulated by the limited partnership agreement

that is set at the inception of a hedge fund and needs the investors’ approval to be changed

(Agarwal, Daniel, and Naik, 2009). When a hedge fund’s investor concentration increases (for

instance, because a large investor decides to invest in the fund) the hedge fund would likely face

resistance from its existing investors to imposing longer share restrictions. The fund’s investors

would be unwilling to accept that their investments become more illiquid. In contrast, the portfolio

adjustments we document do not need investor approval and are more difficult for hedge fund

investors to observe than changes in share restrictions and gates.

The lower risk-adjusted returns of high-IC hedge funds raises the question of why an investor

would invest in a hedge fund with a concentrated investor base. There are several possible explana-

tions for this empirical observation. First, it is possible that investor awareness regarding this issue

is low.8 Our findings suggest that this inattention is costly. Second, there are factors that could

7Share restrictions include lock-ups, redemption and redemption notice periods.
8A hedge fund investor does not have a large panel dataset (as used in this paper) available to analyze the impact

of investor concentration on risk-adjusted returns.
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make it optimal for an investor to invest in a high-IC hedge fund despite the lower risk-adjusted

returns. For example, the presence of a large investor could be a positive signal about the quality

of the fund when assuming that the large investor conducted proper due diligence before investing.

To our knowledge, this is the first paper that investigates the effect of investor concentration

on liquidity outflows. An emerging literature has obtained mixed findings on how the presence of

large investors, proxied by institutional ownership, affects fundamental outflows of asset managers.

For example, Chen, Goldstein, and Jiang (2010) and Goldstein, Jiang, and Ng (2017) find that

institutional investors of a mutual fund that holds an illiquid portfolio are less likely to run on

the fund following a poor performance than retail investors (the flow-performance sensitivity is

weaker for institutional investors), and conclude this is because institutional investors internalize

the price impact of their redemptions. However, in contrast to these findings on mutual funds,

Schmidt, Timmermann, and Wermers (2016) report that large institutional investors exhibit greater

flow-performance sensitivity and are more likely to run on money market funds holding illiquid

assets than smaller institutional or retail investors, and conclude this is likely because institutional

investors have more resources to monitor their investments. For hedge funds, we find no evidence

that investor concentration affects fundamental flows or the flow-performance relationship. A likely

reason behind the contrasting findings in these three studies is that the analyzed asset manager

types differ along a range of dimensions.9

The remainder of the paper has the following structure. The related literature is discussed in

Section 2. Section 3 presents the data and summary statistics. Section 4 reports the results from

our empirical analysis, and Section 5 concludes.

2 Related literature

Hedge funds are often thought to be arbitrageurs that contribute to market efficiency (see, for

example, Hombert and Thesmar (2014)). Limits to arbitrage theories predict that mispricing

can persist because arbitrageurs are financially constrained (see, for example, Shleifer and Vishny

(1997); Gromb and Vayanos (2002); Brunnermeier and Pedersen (2009)). We show that the com-

position of the investor base can also impose constraints on the ability of a hedge fund to correct

mispricing, as a high-IC hedge fund has to hold more precautionary cash and refrain from risky

arbitrage trades to avoid realizing losses should a large liquidity outflow occur that forces an early

exit from such a trade. Further, forced asset sales of hedge funds can also pose a risk to financial

stability. An individual hedge fund selling assets because of outflows can have a contagious effect

on other hedge funds and a widespread impact on the stability of asset markets. Hedge funds often

have large overlaps in their portfolios, and the sales of one hedge fund can depress asset prices and

lead to losses for other hedge funds with similar portfolios.10

9In particular, hedge funds, unlike mutual funds or money market funds, adjust for the illiquidity of their holdings
through longer share restrictions (see Aragon (2007) and Agarwal, Daniel, and Naik (2009)), have no retail investors
but only institutional investors and high net-worth individuals, and do not disclose their portfolio holdings to investors.

10An example of overlapping portfolios causing contagious losses in the hedge fund industry is the “quant meltdown”
discussed by Khandani and Lo (2011). They show that several equity long-short hedge funds experienced substantial
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This paper contributes to the hedge fund literature by adding to our understanding of investor

concentration as a novel source of risk for hedge funds. There is a large literature that documents

how hedge funds are exposed to systematic risk—proxied by equity, bond, and option factors.11

In contrast, we analyze the idiosyncratic risk posed by the hedge fund’s investor composition.

Investor composition has received little attention by the literature with the exception of the hedge

fund manager’s stake (see, for example, Ackermann, McEnally, and Ravenscraft (1999); Agarwal,

Daniel, and Naik (2009); and Gupta and Sachdeva (2017)). Our paper presents a novel mechanism

that contributes to a literature on how portfolio allocations of asset managers are affected by investor

flows (see, for example, Chordia (1996); Teo (2011); Ben-David, Franzoni, and Moussawi (2012);

Agarwal, Aragon, and Shi (2018)) and the impact of such portfolio allocations on performance

(see, for example, Edelen (1999); Aragon (2007); Agarwal, Daniel, and Naik (2009)). Further, by

showing that investor concentration can have an effect on the cash holdings and portfolio liquidity

of hedge funds, our paper contributes to the literature examining hedge funds and their portfolio

liquidity (see, for example, Getmansky, Lo, and Makarov (2004); Sadka (2010); Jylha, Rinne, and

Suominen (2014); Aiken, Clifford, and Ellis (2015); Kruttli, Patton, and Ramadorai (2015); Aragon,

Ergun, Getmansky, and Girardi (2017); Barth and Monin (2018)).

A large literature looks at the flow-performance relationship of mutual funds and hedge funds

(see, for example, Chevalier and Ellison (1997); Sirri and Tufano (1998); Lynch and Musto (2003);

Chen, Goldstein, and Jiang (2010); Li, Zhang, and Zhao (2011); Christoffersen, Musto, and Werm-

ers (2014); Getmansky, Liang, Schwarz, and Wermers (2015); and Goldstein, Jiang, and Ng (2017)).

Generally, this literature investigates whether performance predicts investor flows, that is, funda-

mental flows. Our investor concentration mechanism is distinct because the outflows considered in

this paper are driven by liquidity flows that are orthogonal to hedge fund performance. Even if a

hedge fund is performing well, investors can experience idiosyncratic liquidity shocks for exogenous

reasons and redeem their investments.

3 Data and summary statistics

The primary source for our empirical analysis is data from the SEC’s Form PF, which was adopted

as part of the Dodd-Frank Wall Street Reform and Consumer Protection Act of 2010. Form PF is

filed by investment advisers that are registered with the SEC and manage at least US$150 million

in private funds, such as hedge funds and private equity funds. Small private fund advisers file

annually, while large advisers file quarterly and are required to report more detailed information

losses in August 2007, and these correlated losses were likely triggered by one hedge fund or proprietary trading desk
unwinding its portfolio. Further, Boyson, Stahel, and Stulz (2010) find evidence of substantial hedge fund contagion
in response to liquidity shocks. Our findings suggest hedge funds take investor concentration risk into account and
hold more cash and liquid assets, which mitigate the risk of forced asset sales and contagious losses. This result is
important for policymakers wary of the potential of hedge funds to spark widespread market instability.

11See, for example, Fung and Hsieh (1997, 2001, 2004); Agarwal and Naik (2004); Bollen and Whaley (2009); Bali,
Brown, and Caglayan (2012); Patton and Ramadorai (2013); Buraschi, Kosowski, and Trojani (2014).
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on their “Qualifying Hedge Funds.”12 A Qualifying Hedge Fund has a NAV of at least US$500

million. We only use data on Qualifying Hedge Funds because their filings are quarterly and certain

variables crucial to our analysis, particularly those relating to cash holdings, are only reported by

these funds. Details on the sample construction are included in Appendix C.1.

Our sample period runs from 2012:Q4 to 2017:Q4, inclusive. Table C.1 of Appendix C provides

a summary of the variable definitions and data sources for quick reference. Table 1 Panel A presents

the number of observations (hedge fund-quarters), average, standard deviation, and 10th, 50th, and

90th percentiles for several quarterly variables capturing key characteristics of the hedge funds in

our analysis.

Our main variable of interest, ICit, is based on the hedge funds’ reported five-investor concen-

tration ratio, that is, how much of the reporting fund’s equity is held by the five investors with

the largest investments in the fund.13 The average five-investor concentration ratio across all of

the hedge funds in our sample is 50%, and the median is 47%.14 These values show that hedge

funds often depend on a handful of large investors. The 10th and 90th percentiles are 24% and

84%, respectively, which shows the measure varies considerably across the hedge funds in our sam-

ple. In the Online Appendix, we analyze how the five-investor concentration ratio relates to the

Herfindahl-Hirschman Index.

The other two variables of interest are flows (Fit) and cash (Cashit/NAVit). We estimate the

flows for quarter t and hedge fund i as Fit = (NAVit − NAVit−1 × (1 + rit))/(NAVit−1), where

rit is the return net-of-fees. The flows are winsorized at the 5% level as in Ben-David, Franzoni,

and Moussawi (2012). Hedge funds report their “unencumbered cash” in Form PF.15 The average

unencumbered cash as a percent of NAV is 15.3%, with a standard deviation of 20.5% and median

of 6.8%. In later discussions, we will refer to unencumbered cash divided by NAV simply as cash.

In Form PF, hedge funds report the percentage of the portfolio, excluding cash, that can be

liquidated within particular time horizons (within <1, 2-7, 8-30, 31-90, 91-180, 181-365, and >365

days) using the market liquidity in a given reporting period. We compute the weighted average

to obtain a measure of portfolio illiquidity (PortIlliqit). The average portfolio illiquidity measure

12Large hedge fund advisers are defined as those with at least US$1.5 billion in total regulatory assets under
management aggregated across all of their hedge funds.

13Form PF Question 15 asks for the “beneficial owners,” referring to the investors, not the advisers or managers,
of the hedge fund.

14Smaller hedge funds that file an abridged version of Form PF at an annual frequency also have a high average
investor concentration measure, indicating that investor concentration risk is not simply restricted to large hedge
funds. The abridged version reported by annual filers does not include some variables crucial to our analysis (e.g.,
measures of cash, liquidity and share restrictions), so only hedge funds that are required to file quarterly are included
in our baseline analysis.

15Unencumbered cash is defined in Form PF: Glossary of Terms as the fund’s cash and cash equivalents plus the
value of overnight repos used for liquidity management where the assets purchased are U.S. treasury securities or
agency securities minus the sum of the following (without duplication): (i) cash and cash equivalents transferred to
a collateral taker pursuant to a title transfer arrangement; and (ii) cash and cash equivalents subject to a security
interest, lien or other encumbrance (this could include cash and cash equivalents in an account subject to a control
agreement).[Pg. 10] Cash equivalents are defined in Form PF as (i) bank deposits, certificates of deposits, bankers
acceptances and similar bank instruments held for investment purposes; (ii) the net cash surrender value of insur-
ance policy; (iii) investments in money market funds; (iv) US treasury securities (including derivatives); (v) agency
securities (including derivatives); and (vi) any certificate of deposit for any of the foregoing.
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in our sample is 52 days and the median is 14 days. Hedge funds are also required to report

restrictions on investor withdrawals locked for particular time horizons (for the same horizons as

for portfolio illiquidity). We compute the weighted average as a measure of share restrictions for

each fund (ShareResit). The average share restriction is 167 days with a median of 147 days.

The portfolio illiquidity measure, with an average of 53 days, is substantially lower than the

share restrictions measure, with an average of 167 days. This illiquidity gap (see Aragon, Ergun,

Getmansky, and Girardi (2017) and Agarwal, Aragon, and Shi (2018)) can be partially explained by

Form PF asking hedge funds to assess how long it would take to liquidate an asset under “current

market conditions,” that is, the market conditions in the quarter for which the hedge fund is filing

the form, and our sample covers a period of relatively high market liquidity. The fact that portfolio

illiquidity is substantially lower than share restrictions suggests that the average high-IC hedge

fund is relatively unconcerned that forced selling of illiquid assets would generate losses because

of price impact. However, as discussed previously, large investor outflows can also force a hedge

fund to exit an arbitrage trade early and realize losses, and such non-convergence can occur even

in highly liquid assets.16

The final three variables presented in Panel A are manager stake (MgrStakeit), number of

investors (NumInvestorsit), and minimum investment (MinInvit). These three variables are ob-

tained through the matching of Form PF data with the publicly available Form ADV filings of the

hedge funds.17 We include in our sample only matched hedge funds with more than five investors

and a manager stake of no more than 50%. We apply these filters for two reasons. First, the IC

variable is a five-investor concentration measure and fails to capture variation in the concentration

of the investor base for hedge funds with five or fewer investors. Second, the filters avoid including

family offices and predominantly manager-owned funds in our analysis.18 In a family office, the

investors of the fund know each other and can smooth out liquidity shocks amongst each other.

Also, the hedge fund manager likely knows the investors personally, which reduces the asymmet-

ric information about liquidity outflows between investors and the hedge fund manager. In this

case, the hedge fund manager will likely learn about the possibility of large outflows long before

the redemption request is filed, which mitigates the need for holding precautionary cash. If the

manager owns the majority of the hedge fund, then the asymmetric information between the hedge

fund manager and the investor base is also clearly limited. Therefore, the mechanism of how IC

affects the probability of large liquidity outflows is likely not applicable to these hedge funds. In

our sample, minimum investment has a mean of of US$3.8 million and median of US$1 million.

In Table 1 Panel B, we show the average of each variable separately for six hedge fund invest-

16Prime examples of convergence trades in liquid assets that failed to converge for an extended period of time
are the bet by Long-Term Capital Management on the convergence of the stock prices of Royal Dutch and Shell
described in Lowenstein (2000) and Tiger Management’s failed shorting of technology stocks during the dot-com
boom (Brunnermeier and Nagel (2004)).

17We are able to merge 98.5% of the fund-date observations in Form PF to Form ADV. Schedule D, Section 7.B.(1)
of Form ADV asks advisers to report on the number of beneficial owners (number of investors) of the fund. In the
same section, advisers are asked to report the minimum investment level and the percentage of the fund beneficially
owned by the adviser or its related persons (manager stake).

18Our results are robust to including these observations in our sample.
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ment strategies (Credit, Equity, Event Driven, Macro, Multi-strategy, and Relative Value) and an

“Other” category. We establish a single broad strategy category for each hedge fund and reporting

date as described in the Appendix C.2. The most fund-quarter observations are for Equity hedge

funds with 5,993. The second largest strategy is Multi-strategy hedge funds with 2,702 observations.

Panel B shows that there is little variation across strategies in average IC, which clusters around

50%. Event Driven hedge funds have the lowest average IC with 46% and Relative Value hedge

funds have the highest average IC with 59%. In contrast, there are large differences across strategies

for share restrictions. Macro hedge funds have average share restrictions of 95 days, but the share

restrictions of Event Driven hedge funds are on average 247 days. Further, for cash holdings and

portfolio illiquidity, the differences across strategies are also large. For cash, the range is from

10% (Equity) to 43% (Macro). For portfolio illiquidity, Macro hedge funds have the most liquid

portfolios (11 days), and “Other” hedge funds have the least liquid portfolios (112 days).

We show the distribution of IC across investment strategies in Figure 1, which depicts the

number of fund-quarter observations in each IC tercile for each strategy, where the lowest IC

observations are in the first tercile. IC shows little correlation with a specific strategy type, as most

strategies are equally distributed across the three terciles. The one exception is the Relative Value

strategy, which is slightly skewed toward the high-IC tercile.

In the Online Appendix, we compare the size, net-of-fees returns, and flows of hedge funds from

Form PF and from the Thomson Reuters Lipper TASS Database (TASS), as the TASS database

and other commercial hedge fund databases have been used extensively in the hedge fund literature.

The average measures of the two hedge fund datasets correlate strongly over our sample period.

4 Empirical results

In this section, we empirically test the three predictions of the simple theoretical framework pre-

sented in Appendix A. The three predictions are supported by our results. First, our analysis shows

that hedge funds with a high IC have a greater probability of large outflows than hedge funds with

a low IC. Second, we find that high-IC hedge funds maintain a larger cash share in their portfolios.

Third, our results show that high-IC hedge funds generate lower risk-adjusted returns. Further, we

examine why high-IC hedge funds do not use other methods to account for a high IC and rule out

alternative mechanisms.

4.1 Investor concentration and large outflows

The first prediction that we test is whether high-IC hedge funds have a greater probability of large

liquidity outflows than low-IC hedge funds. Our framework in Appendix A distinguishes between

flows due to liquidity shocks to investors (FL
it or liquidity flows) and flows due to hedge fund

fundamentals (FF
it or fundamental flows), with total flows Fit = FF

it + FL
it . IC affects flows due

to investor liquidity shocks and the likelihood of large liquidity outflows is expected to be higher

when IC is high. We first estimate the liquidity flows necessary for our empirical analysis. We
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use a methodology similar to Coval and Stafford (2007), who regress flows on lagged performance

and lagged flows to estimate predicted flows of mutual funds.19 We use these predicted flows as a

measure of flows due to fundamentals.

Unlike other asset managers, hedge funds have share restrictions that affect how flows are

predicted by lagged performance and lagged flows (see Getmansky, Liang, Schwarz, and Wermers

(2015)). Therefore, we add share restrictions to the regression estimated by Coval and Stafford

(2007). We estimate the following panel regression model with the Fama and MacBeth (1973)

methodology:

Fit =a+
P∑

p=1

(bpFit−p + cprit−p + dpFit−p ∗ ShareResit−p

+ eprit−p ∗ ShareResit−p + gp ∗ ShareResit−p) + εit.

(1)

The frequency is quarterly, and variations of the model are estimated with values for P of 1 or 2,

i.e., including one or two lags, respectively. The estimated liquidity flows of a hedge fund, F̂L
it , is

the difference between the predicted and actual flows.

In a second stage, we estimate a logit model to test whether IC predicts a higher probability of

large liquidity outflows.20 The logit model is given by

P (F̂L
it ≤ τ |ICit−1,Wit−1) = L(ψ + γICit−1 + φWit−1), where L(z) =

exp(z)

1 + exp(z)
. (2)

For τ , we use two liquidity flow thresholds: -15% and -20% of a hedge fund’s NAV. We consider

these thresholds because outflows of that magnitude are considerable in our sample. The respective

unconditional probabilities for outflows being greater than 15% and 20% are 4% and 2%, respec-

tively. Wit−1 is a set of control variables that may affect flows. Further, we include quarter and

strategy fixed effects. The standard errors are clustered by quarter.

The results of the first stage regression in equation (1) are shown in Appendix B. The estimation

results for the logit model in equation (2) are in Table 2. Panel A shows the results for the

dependent variable being an indicator variable that takes the value 1 if outflows are greater in

magnitude than 20% of a hedge fund’s NAV. The coefficient estimates of IC are greater than 1 and

strongly significant for the specifications without and with controls and when one lag (P = 1) or

two lags (P = 2) are used in the first stage regression. Because the reported coefficient estimates

are odds ratios, a coefficient estimate greater than 1 implies that the probability of outflows being

greater than or equal to 20% increases when IC increases. The coefficient estimates are around

1.01, which means that if IC increases by 1 percentage point, then the odds ratio increases by 1%.

When looking at the coefficient estimates of the IC terciles, we can see that the odds of a hedge

fund in the third tercile to experience outflows greater than or equal to 20% are 1.5-2 times higher

19Jotikasthira, Lundblad, and Ramadorai (2012) also use this methodology to estimate predicted flows based on
lagged performance and lagged flows.

20Using a probit model obtains results that are qualitatively the same.
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than for a hedge fund in the first tercile. Similar results are obtained when setting the threshold for

the outflows to greater than or equal to 15%. The coefficient estimates of IC or higher IC terciles

remain greater than 1 and significant under the different specifications.

These results confirm our hypothesis that high-IC hedge funds face a significantly higher prob-

ability of large liquidity outflows and motivate our next analysis.

4.2 Investor concentration and cash

We showed in the previous section that high-IC hedge funds have a greater probability of large

outflows. Next, we test our second hypothesis that a hedge fund with a high IC accounts for the

increased probability of sudden large outflows by holding more cash. Holding insufficient cash can

lead to hedge funds being forced to sell assets and incur losses because an arbitrage trade has to be

exited early and, for hedge funds that invest in illiquid assets, because of price impact when illiquid

assets have to be sold quickly. Importantly, our simple framework predicts that a manager of a

high-IC hedge fund does not necessarily need to experience large outflows to hold precautionary

cash, because the manager can rationally anticipate that a concentrated investor base increases the

probability of large outflows.

We estimate a panel model that has cash normalized by NAV, Cashit/NAVit, as the dependent

variable:
Cashit
NAVit

= ψ + γICit + φZit + εit, (3)

where cash is as defined in Section 3. The control variables are included in the column vector

Zit. We use the control variables size, flow, share restrictions, financing duration, leverage, and

manager stake: log(NAVit), Fit, ShareResit, FinDurit, Leverageit, and MgrStakeit, respectively.

If hedge funds take IC into account when making portfolio allocation decisions and hold more cash,

we would expect γ to be significant and positive.

The estimates of the panel regression are shown in Table 3. Because of the persistence of

our dependent variable, that is, Cashit/NAVit, we account for potential serial correlation in the

error terms by clustering by hedge fund in addition to clustering by time (see Petersen (2009) and

Thompson (2011)). We also include strategy fixed effects and quarter fixed effects. The results

strongly support our hypothesis. We find that the coefficient estimate of IC, γ, is positive and

strongly significant with and without the control variables included. Consequently, the results are

in line with the mechanism that high-IC hedge funds hold more cash than low-IC hedge funds to

absorb large outflows that are more likely to occur because of a concentrated investor base.

These results are economically significant. The γ estimate is around 0.14 when including control

variables. This coefficient estimate implies that a one standard deviation (22 percentage points)

increase in IC is associated with an increase of 3.1 percentage points in the cash holdings normalized

by NAV. This increase is substantial considering that the average cash holdings are 15.3% and the

median is 6.8%, as shown in Table 1.

The control variables have coefficient estimates consistent with existing research. For three of

12



the control variables, the coefficient estimates are highly significant. Size has a positive coefficient

estimate, which is likely a result of larger hedge funds generally investing in more liquid assets.

This finding is not surprising because trading strategies in illiquid assets are difficult to scale due to

trading costs and price impact (see, for example, Fung, Hsieh, Naik, and Ramadorai (2008)). Also,

holding cash is expensive, and larger hedge funds may be better able to afford the costs of holding

large cash positions. The coefficient estimate of share restrictions is negative, which shows that

hedge funds that grant investors less favorable (longer) redemption terms hold less cash. This result

is in line with the finding of Aragon (2007) and Agarwal, Daniel, and Naik (2009), who show that

longer share restrictions lead to a hedge fund holding a more illiquid portfolio. Interestingly, the

economic significance of share restrictions is similar in magnitude to IC. A one standard deviation

decrease in the share restrictions (121 days) leads to an increase of cash holdings normalized by NAV

of 3.1 percentage points (compared with an increase of also 3.1 percentage points when IC increases

by one standard deviation). Further, leverage has a positive coefficient estimate, suggesting that

highly leveraged hedge funds hold more cash. This result is in line with highly leveraged hedge

funds being more vulnerable to an increase in funding constraints and holding more cash as a

precautionary measure. A one standard deviation increase in leverage (2.1) leads to an increase in

cash holdings normalized by NAV of 2.5 percentage points, which is again comparable to the effect

of IC on cash.

To test whether there is non-monotonicity in the effect of IC on cash, we estimate a panel

regression with hedge funds being sorted into three terciles based on IC in each quarter:

Cashit
NAVit

= ψ +

3∑
n=2

Ii∈ntγn + φZit + εit. (4)

The third tercile corresponds to the hedge funds with the highest IC. The estimates of γ2 and γ3

should be positive and significant, with γ2 smaller than γ3 if high-IC hedge funds hold more cash.

Columns (3), (4), (7), and (8) of Table 3 show that the γ2 and γ3 estimates are indeed positive and

significant for the specifications where the control variables are included. The estimates are robust

to including quarter fixed effects and strategy fixed effects. Further, the γ2 estimate is significantly

lower than γ3, which indicates that the IC effect on cash is stronger for hedge funds with very high

IC.

The results in Table 3 suggest that hedge funds account for a high IC by holding more cash, and

the magnitude of the changes in cash are economically significant. These results raise the question

of whether the increase in cash is “sufficient” given the increase in the probability of large liquidity

outflows shown in Table 2 for high-IC hedge funds. While the answer to this question is to some

degree subjective, we assume that if hedge funds adjust cash to fully account for IC risk, then the

probability of the liquidity outflows exceeding cash holdings in a given quarter would be the same

for low and high-IC hedge funds.

We sort each hedge fund in our sample that have IC, liquidity flow, and cash data for at least

four quarters into a quintile based on average IC. The hedge funds in the first quintile have the
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lowest IC values. Then, for each quintile, the median of quarterly liquidty flows, standard deviation

of liquidity flows, and cash are computed. The liquidity flows are computed with the model given

in equation (1) and P = 1. Assuming that the liquidity flows are normally distributed, we compute

the probability that the liquidity outflows exceed cash within a quarter based on the median cash

and liquidity flow values for each IC quintile. We also compute bootstrapped standard errors for

these probabilities.

Plot (a) of Figure 2 depicts the probability of liquidity outflows exceeding cash in a quarter for

each IC quintile with 95% confidence intervals. The figure shows that the probability is around 10%.

There is only little variation across the quintiles, and for none of the quintiles is the probability

significantly different from any of the other quintiles. This result indicates that hedge funds adjust

for a high IC by holding more cash such that the probability of liquidity outflows exceeding cash

is unchanged.

In contrast, Plot (b) of Figure 2 presents the counterfactual scenario. Here, the probabilities

of liquidity outflows exceeding cash when we set the median cash level for each IC quintile equal

to the median cash level of the first quintile. We can see that the probabilities for quintiles three,

four, and five are significantly higher than for the first quintile. This result suggests that high-IC

hedge funds avoid this significant increase in the likelihood of liquidity outflows exceeding cash by

their adjustment in precautionary cash levels.

4.2.1 Investor type

So far, our analysis has focused on differences in investor concentration across hedge funds without

differentiating among investor characteristics. In this section, we investigate whether there is

variation in the effect of IC on cash based on the predominant investor type invested in a hedge

fund. Question 16 of Form PF asks for the percentage of the reporting hedge fund’s equity held

by individual versus institutional investors, where individual investors are generally high net worth

individuals.21 The summary stats for these data are reported in Table B.1 of Appendix B. To

assess whether the effect of IC on cash is robust to differences in the investor composition type, we

estimate the model in equation (3) for subsamples of hedge funds where individuals own greater

than or equal to 50% and 25% of the hedge fund’s equity. We also estimate the same model for the

complimentary subsamples of hedge funds where institutions own greater than 50% and 75% of the

hedge fund’s equity (where individuals own less than 50% and 25% of the fund, respectively).

The results are reported in Table 4. The first two columns show the regression model estimates

for hedge funds with an individual investor share of greater than or equal to 50%, and 25%, respec-

tively. The subsequent columns present the model estimates for the complementary subsamples.

The effect of IC is robust to the sample split. The coefficient estimates on IC are positive and

21Individual investors are split into US persons and non-US persons. Institutional investors are split into: broker-
dealers, insurance companies, investment companies registered with the SEC, private funds, non-profits, pension plans
(excluding governmental pension plans), banking or thrift institutions (proprietary), state or municipal government
entities (excluding governmental pension plans), state or municipal governmental pension plans, sovereign wealth
funds and foreign official institutions, unknown non-US persons, and others.
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significant across the four subsamples. The lower significance of the IC coefficient estimate for

the subsample of hedge funds with individual investors owning 50% or more of the equity is likely

because of the reduced power due to the reduced sample size. The average individual investor share

is 18% with a standard deviation of 22%, and the 95th percentile is 66%. Therefore, there are only

a few hedge funds for which individuals, as opposed to institutions, hold 50% or more of the equity.

The coefficient estimates in the first two columns are not significantly different from the coef-

ficient estimates of the complementary subsamples in the last two columns. These results indicate

that the effect of IC on cash discussed applies to hedge funds that are predominantly held by both

individual and institutional investors. A further implication is that from a hedge fund’s perspec-

tive, the risk that one of its investors suffers a liquidity shock is likely similar for individual and

institutional investors.

4.3 Additional portfolio adjustments

The results in the previous section are in line with our hypothesis that high-IC hedge funds hold

more cash to absorb potential large outflows. This prediction on the use of precautionary cash to

absorb outflows due to idiosyncratic shocks to large investors is motivated by the theoretical frame-

work described in Appendix A. There are other ways through which hedge funds can potentially

adjust their portfolios to account for a high IC, in addition to holding more cash. In this section,

we test for two additional portfolio adjustments with the caveat that these adjustments can only

be measured through proxies, unlike cash, which we observe directly in Form PF.

In our framework, high-IC hedge funds hold more cash because they want to avoid a scenario

where they have to exit an arbitrage trade early and realize losses. In addition to holding more

cash, high-IC hedge funds may also reduce taking on risky arbitrage trades where the mispricing

can worsen further before the trade yields a profit (see Shleifer and Vishny (1997)). To test this

hypothesis, we test whether high-IC hedge funds have less volatile long-term returns. This test is

based on Hombert and Thesmar (2014), who show that hedge funds with short share restrictions

have less volatile returns, in line with these hedge funds refraining from risky arbitrage trades,

because the funds are concerned about outflows. We estimate the regression model given by

|rgit − r̂
g
i | = ψ + γICit + φZit + εit, (5)

where r̂gi is the average gross return of hedge fund i over the sample period. The regression is

estimated at a semi-annual and annual frequency. As discussed in Hombert and Thesmar (2014),

longer return frequencies are required for this analysis, as monthly returns are likely smoothed

(Getmansky, Lo, and Makarov (2004)). The control variables are again included in the column

vector Zit. The control variables are size, flow, share restrictions, financing duration, leverage, and

manager stake. If high-IC hedge funds refrain from risky arbitrage trades, their return volatility

would be lower and the γ estimate would be negative and significant.

The results are in line with our prediction and are shown in Table 5. The γ estimate is negative
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and significant for all the specifications. The estimates are also economically significant, with a

one standard deviation (22 percentage point) increase in IC predicting an absolute return deviation

from the mean return that is around 95 basis points lower at the annual return frequency. These

results are in line with high-IC hedge funds refraining from taking on arbitrage trades with high

volatility. Share restrictions, which are included as a control, have a coefficient estimate that is

positive and significant. This estimate is consistent with the finding of Hombert and Thesmar

(2014) that hedge funds with long share restrictions avoid risky arbitrage trades. Interestingly,

the economic significance of share restrictions is close to IC. A one standard deviation decrease in

the share restrictions (121 days) leads to decrease in the absolute return deviation from the mean

return of around 85 basis points.

A second portfolio adjustment that can help a hedge fund account for the risks due to a high-

IC, at least to some extent, is holding liquid assets in addition to holding cash. A low portfolio

illiquidity can reduce price impact when assets have to be sold quickly due to outflows caused by

an idiosyncratic shock to a large investor. However, unlike holding cash, a low portfolio illiquidity

does little to prevent realizing losses on arbitrage trades. Arbitrage trades in liquid assets can also

be subject to the risk that prices might diverge further before converging.22

Hedge funds report in Form PF the percentage of the portfolio (excluding cash) that can be

liquidated within particular time horizons. We compute the average time in days that it takes

a hedge fund to liquidate an asset in its portfolio, as described in Section 3, and use it as a

measure of portfolio illiquidity. A drawback of this portfolio illiquidity measure compared with

the cash measure used in the preceding analysis is that it depends on a hedge fund’s subjective

assessment of its portfolio liquidity, which might differ from actual portfolio liquidity and introduce

measurement error.

We use portfolio illiquidity as the dependent variable in place of of cash and estimate the models

given in equations (3) and (4). The results are reported in Table 6 and confirm our previous results.

The coefficient estimates of IC are strongly significant and negative with and without controls.

Accordingly, these results support our hypothesis that hedge funds with higher IC hold a more

liquid portfolio to absorb potential idiosyncratic liquidity shocks to investors. The results with IC

sorted into terciles also support the hypothesis that high-IC hedge funds hold more liquid portfolios.

The results are again economically significant. The γ estimate is around -0.37 with control variables

included. This coefficient estimate implies that a one standard deviation (22 percentage points)

increase in the investor concentration of the hedge fund is associated with a decrease in the hedge

fund’s portfolio illiquidity by 8.1 days. Considering that the average and median portfolio illiquidity

measures are 52.4 and 14.2 days, respectively, this decrease is substantial.

22For example, the hedge fund Tiger Management bet on falling technology stock prices, which were highly liquid,
during the dot-com boom and did not survive this episode as described in Brunnermeier and Nagel (2004).

16



4.4 Implications for hedge fund investors

In the previous section, we show high IC is associated with higher levels of cash. Also, high-IC

hedge funds tend to refrain from arbitrage trades that could lead to losses in the short run and hold

a more liquid portfolio. On the one hand, from the perspective of hedge fund investors, this finding

shows that hedge funds account for a risk that could potentially lead to substantial losses to the

fund and ultimately its investors. On the other hand, our findings raise the question of whether the

portfolio adjustments of high-IC hedge funds generate lower risk-adjusted returns. When high-IC

hedge funds pay a liquidity premium for holding more cash and liquid assets and also refrain from

riskier arbitrage trades that are lucrative in the long run but might lead to losses in the short run,

then returns to investors are potentially affected.

To test this prediction, we follow a procedure proposed for mutual funds by Carhart (1997)

and used for hedge funds by Teo (2011). First, we regress the monthly gross excess returns of each

hedge fund i on the seven factors of the Fung-Hsieh model (see Fung and Hsieh (2004)). We use

the gross excess return, because it allows us to measure whether a hedge fund can profit from lower

cash holdings and a higher portfolio illiquidity without the noise introduced by performance and

management fees. The Fung-Hsieh seven factor model is widely used to estimate hedge fund alphas

(see, for example, Fung, Hsieh, Naik, and Ramadorai (2008); Teo (2009, 2011); and Patton and

Ramadorai (2013)). The seven factors are: the excess return on the S&P 500 index (market factor);

a small minus big factor (S-B factor) constructed as the difference between the return on the Russell

2000 index and the S&P 500; the change in the constant maturity yield of the 10-year Treasury

bond (bond factor); the change in the Moody’s Baa yield minus the change in the 10-year Treasury

bond constant maturity yield (credit factor); and the returns on portfolios of lookback straddle

options on currencies (currency trend factor), commodities (commodities trend factor), and bonds

(bond trend factor) from Fung and Hsieh (2001). To ensure that we have enough data points to

estimate the model, we select only hedge funds with 24 or more monthly return observations as in

Patton and Ramadorai (2013). The return regression is given by

reim = αi + βiGim + εim, where i = 1, 2, ..., N. (6)

The gross excess return of hedge fund i in month m is given by reim. The regressor Gim is a column

vector of the seven Fung-Hsieh factors. The row vector of coefficient estimates β̂i is then used to

compute a monthly αim:

αim = reim − β̂iGim. (7)

We compute an average αit for each quarter t based on the monthly αim and estimate Fama

and MacBeth (1973) cross-sectional regressions on the quarterly αit:

αit = ψ + γICit−1 + φYit−1 + εit. (8)

The control variables are included in the column vector Yit. We use the control variables size, flows,
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share restrictions, financing duration, and manager stake: log(NAVit−1), Fit−1, ShareResit−1,

FinDurit−1, and MgrStakeit−1. We also include strategy fixed effects.

The results are given in Table 7. We show the results for hedge funds’ levered and delevered

quarterly excess returns. When delevering, we divide the excess returns by the leverage measure,

GAV/NAV . The coefficient on IC is negative and strongly significant for both the levered and

delevered returns. As expected, the coefficient estimates for the delevered returns are slightly

lower due to the reduction in the volatility of the dependent variable caused by deleveraging. The

effect of IC on the risk-adjusted returns is economically significant. A one standard deviation (22

percentage points) increase in IC is associated with a reduction in the levered (delevered) annualized

risk-adjusted return of 133 (106) basis points.

The estimated relationships between the control variables and risk-adjusted returns are as es-

tablished in other papers of the asset management literature. Size and flows have a negative effect

on performance in line with the hypothesis of negative returns to scale. The coefficient estimate

of share restrictions is positive, indicating that hedge funds with long lock-up and redemption

periods generate higher risk-adjusted returns. We are not aware of any paper investigating the

effect of financing duration on risk-adjusted returns, but it is sensible to believe that this relation

is positive: a longer financing duration allows hedge funds to pursue more illiquid strategies and

generate an illiquidity premium. The ownership stake of the hedge fund manager does not appear

to significantly affect the risk-adjusted returns.

The lower risk-adjusted returns of high-IC hedge funds raises the question why an investor

would invest in a hedge fund with a concentrated investor base. In other words, why do we observe

so many high-IC hedge funds in our sample? There are different possible explanations for why

investors invest in high-IC hedge funds. First, the mechanism presented in this paper has to our

knowledge not been analyzed in any other paper. Therefore, it is possible that investor awareness

regarding this issue is low. Unlike in this paper, investors do not have a large regulatory panel

dataset available to estimate the effect of IC on risk-adjusted returns. Our analysis suggests that

such inattention is costly and it would beneficial for investors to monitor the investor concentration

of hedge funds. Second, there are factors that could make it optimal for an investor to invest in a

high-IC hedge fund despite the lower risk-adjusted returns. Being a large investor of a hedge fund

could lead to better access to the hedge fund manager and facilitate monitoring (see, for example,

Schmidt, Timmermann, and Wermers (2016)). On the other hand, small investors might be willing

to invest in a high-IC hedge fund because a large investor could internalize “runs” on a hedge fund

after a poor performance (see, for example, Chen, Goldstein, and Jiang (2010)). If large investors

monitored hedge funds more closely or internalized runs, we would expect that high-IC hedge

funds have a stronger or weaker flow-performance relationship, respectively. However, our analysis

in Section 4.5.2 shows that IC has no effect on the flow-performance relationship of hedge funds.

These results are consistent with investors investing in high-IC hedge funds because of inattention.
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4.5 Alternative mechanisms

There are alternative ways through which hedge funds might deal with a high IC risk other than

adjusting their portfolios such that potential large outflows can be absorbed. In this section, we

examine these alternative ways of accounting for high-IC risk and analyze other mechanisms that

could potentially explain some of our results. While we do not find evidence for these alternatives,

we include factors that control for these alternatives in our baseline regressions.

4.5.1 Methods to prevent outflows

In this section, we discuss methods that a hedge fund manager could potentially use to prevent

large outflows driven by a high investor concentration from occurring in the first place, instead of

adjusting the portfolio such that large outflows can be absorbed. We examine the likelihood that

these methods are employed. Ways to account for a high IC without adjusting the portfolio could

be through share restrictions or redemption gates.

One could expect that hedge funds with a high IC have longer share restrictions. These longer

share restrictions would give the hedge fund more time to sell assets and generate cash when facing

large outflows. However, the correlation between share restrictions and IC is small, as shown in

Figure 3, both for the entire sample and within individual strategies. The correlations are small

in magnitude and often negative. For the total sample, the correlation is -0.16. If high-IC hedge

funds used share restrictions to account for IC risk, the correlation would be larger in magnitude

and positive. Further, we control for share restrictions in all our regression specifications and IC

remains significant.

An explanation for the low correlation between IC and share restrictions is that share restrictions

are generally set at the inception of a hedge fund and stated in the hedge fund’s limited partnership

agreement, so these restrictions are difficult to change throughout the hedge fund’s life (see Aragon

(2007) and Agarwal, Daniel, and Naik (2009)) as the investors’ approval is required. This means

that if IC changes because of investors deciding to invest in or withdraw from the hedge fund, a

hedge fund cannot simply adjust its share restrictions to corresponds to its new IC. A hedge fund

that tries to impose longer share restrictions because its IC increased would likely face resistance

from its investors, because the investors would be unwilling to accept that their investment becomes

more illiquid without any changes in the investment strategy of the hedge fund that would justify

longer share restrictions. Therefore, we expect that hedge funds account for a high IC through

portfolio adjustments that do not need investor approval and are more difficult for investors to

observe, rather than through changes in share restrictions. Our results support this prediction.

In addition to the granular share restriction horizons captured in ShareRes, we examine whether

the extent to which hedge funds can restrict (impose gates on) or suspend withdrawals and redemp-

tions is related to the investor concentration of a fund. Figure 4 illustrates the fraction of funds

that are able to impose restrictions on investor withdrawals and redemptions.23 The depth of color,

23As captured in Question 49 (a), (b), and (c) of Form PF.
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from darkest to lightest, correspond to the strength of the fund’s restrictions, with each observation

assigned to a set depending on the strongest restriction the fund is able to impose. The four sets

represent the fraction of funds that (1) do not allow investors to withdraw their investment in the

ordinary course; (2) are able to suspend any investor withdrawal of 100% the fund’s NAV; (3)

are able to materially restrict (via the imposition of “gates”) any investor withdrawal of 100% the

fund’s NAV; and (4) have restrictions on 0% of their fund’s NAV. Only 14% of observations fall

in category (4). 86% of the observations are funds that are able to restrict or suspend 100% of

investor withdrawals. We define the indicator HasGatesit as 0 if a fund is in category (4), i.e., if

the fund has no restrictions on investor withdrawals and redemptions, and 1 otherwise. HasGatesit

is uncorrelated with a fund’s investor concentration. Inclusion of HasGates as a control does not

affect our results. This is unsurprising given that imposing discretionary gates on redemptions can

lead to high reputational costs and subsequent difficulty in raising capital (Aiken, Clifford, and

Ellis, 2015). It is a tool that is more likely to be used during periods of market stress when peer

hedge funds are also imposing discretionary restrictions. As such, it would be a less effective tool

for high-IC hedge funds to manage idiosyncratic investor liquidity shocks.24

4.5.2 Investor concentration and flow-performance sensitivity

The IC risk that we focus on in this paper is concerned with outflows due to idiosyncratic liquidity

shocks to a hedge fund’s investors who own a large share of the fund’s NAV. These liquidity shocks

are independent of the performance or other fundamentals of the hedge fund. Even if a hedge fund is

performing well, a large investor can experience an idiosyncratic liquidity shock and redeem his/her

investment in the fund. Having a diversified investor base reduces this risk of large outflows from

idiosyncratic liquidity shocks and reduces the need to hold precautionary cash. However, separate

from this mechanism, a concentrated investor base could potentially also affect the sensitivity of

a hedge fund’s flows to past performance, that is, its fundamental flows. On the one hand, large

hedge fund investors potentially internalize the impact of their redemptions on the hedge fund

and refrain from redeeming investments when the hedge fund performs poorly, in which case flows

would be less sensitive to the hedge fund’s performance, reducing the need for precautionary cash

holdings. On the other hand, large hedge fund investors might have the resources to monitor

their investments more closely, in which case flows would be more sensitive to the hedge fund’s

performance, increasing the need for precautionary cash holdings.

We can infer from existing research that evidence for either mechanism, internalizing the im-

pact of redemptions or better monitoring, could be present in our data. Chen, Goldstein, and

Jiang (2010) show for equity mutual funds that the flow-performance sensitivity is stronger for

funds that hold more illiquid assets, but this effect disappears for mutual funds held by large in-

24We do not show HasGates in our main regression results as there is little variation in the ability of the funds
in our sample to restrict or suspend investor withdrawals (86% of fund observations have HasGates=1, i.e., can
impose restrictions on withdrawals of 100% of the fund’s NAV) and the variable is collinear to a combination of
other regressors. More granular information on investor share restrictions is captured in ShareRes and shown in all
regressions.
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stitutional investors as opposed to retail investors, because unlike the latter, large institutional

investors internalize the price impact of their redemptions and are less likely to run on a mutual

fund that is in distress. In contrast, Schmidt, Timmermann, and Wermers (2016) find that large

institutional investors were more likely to run on money market funds with illiquid assets than

smaller institutional or retail investors around the collapse of Lehman Brothers in September 2008.

The authors posit that the largest institutional investors have more resources to monitor their

investments, and thus, react more quickly when a money market fund is in distress. Schmidt, Tim-

mermann, and Wermers (2016) discuss how differences between mutual funds and money market

funds along dimensions such as NAV structure and payoffs can explain why their findings differ

from Chen, Goldstein, and Jiang (2010). Importantly, hedge funds have several unique features not

present in mutual funds or money market funds. For example, hedge funds have share restrictions

which allows them to ameliorate the impacts of asset illiquidity. Further, hedge funds have no retail

investors, do not disclose their portfolio holdings to investors, and on average have investor bases

that are much more concentrated than mutual funds and money market funds. Therefore, it is a

priori difficult to determine what effect investor concentration will have on the flow-performance

relationship for hedge funds.

To test whether IC affects the flow-performance sensitivity of hedge funds, we estimate the

panel model given by

Fit = ψ + γ1ICit−1 + γ2Performanceit−1 × ICit−1 + φ1Performanceit−1 + φ2δZit−1 + εit, (9)

where Performanceit−1 is a measure of the hedge funds’ lagged performance. We try four measures

of quarterly performance: net returns, negative net returns, net returns terciles, and net returns

quintiles. The control variables in vector Zit−1 are lagged size, flows, share restrictions, and manager

stake: log(NAVit−1), Fit−1, ShareResit−1, and MgrStakeit−1. We include quarter and strategy

or fund fixed effects. The standard errors are clustered by quarter. If a high IC is associated with

flows that are less sensitive to performance, we would expect the estimate of γ2 to be negative and

significant. If a high IC is associated with flows that are more sensitive to performance, then the

estimate of γ2 would be positive and significant.

The results with quarter and fund fixed effects are given in Table 8, and the results with

quarter and strategy fixed effects are reported in Table B.3 in Appendix B. In line with the existing

literature on hedge fund flows, we find evidence that higher returns lead to higher subsequent

flows. However, the coefficient estimates of ICit−1 and of the interaction term Performanceit−1×
ICit−1 are insignificant for all specifications. These results suggest that the concentration of the

investor base does not affect the flow-performance sensitivity of a hedge fund, and the documented

relationship of IC and precautionary cash holdings is not affected by any differences in the flow-

performance sensitivity between low- and high-IC hedge funds.
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4.5.3 Do high-IC funds focus on providing portfolio protection?

Could it be that investors of high-IC funds are attracted to these hedge funds because the funds

offer portfolio protection by outperforming peer funds during market downturns? This alternative

hypothesis could explain the underperformance of high-IC hedge funds given that the regulatory

data used for our analysis is available from 2012Q4 to 2017Q4, a relatively quiet period in financial

markets. However, we can test if high-IC hedge funds are focused on such “crisis alpha” strategies.

In Form PF, managers are required to disclose the projected performance of their investment

portfolios under several market stress scenarios.25 These values should directly reflect a manager’s

expectations on how the portfolio will fare during a market downturn. The manager’s expectations

would indicate how the fund’s investment strategy and portfolio risks are represented to investors.

If high-IC funds are expected to outperform in crisis scenarios, it should be reflected in the

expectations disclosed by the manager. The crisis scenarios available in the data are (i) “Equity

prices decrease 20%”, (ii) “Credit spreads increase 250bps”, (iii) “Implied volatilities increase 10

percentage points”, (iv) “Default rates increase 5 percentage points (corporate bonds and CDS)”

(v) “Default rates increase 5 percentage points (ABS)”. If a high-IC hedge fund is meant to provide

downside protection to its investors, this should be directly reflected in the manager’s expectations

of portfolio performance being relatively higher under these scenarios.

In Table 9 column 1, we show the unconditional correlation between a hedge fund’s IC and

expected portfolio changes under different stress scenarios. Across the five scenarios, these correla-

tions are small or negative, indicating that it is unlikely that high-IC funds are targeting portfolio

protection during market stress. Further, we control for other fund characteristics to estimate the

conditional relationship between the IC level of a fund and its portfolio performance under different

scenarios using the regression specification, similar to equation (3),

yit = ψ + γICit + φZit + εit, (10)

where yit is the percent portfolio change under a given stress scenario. The control variables are

included in the vector Zit. We use the control variables size, flow, share restrictions, financing

duration, leverage, and manager stake: log(NAVit), Fit, ShareResit, FinDurit, Leverageit, and

MgrStakeit, respectively. We also include quarter and strategy fixed effects and cluster standard

errors by quarter and fund. If hedge funds with higher IC provide downside protection during crisis

scenarios, we would expect γ to be significant and positive. Table 9 column 2 shows the coefficient

estimates for γ. It is not significantly positive any of the stress scenarios. In fact, the relationship

is marginally negative for scenario (i).

We do not find that high-IC funds are expected to provide significantly more portfolio pro-

tections under stress scenarios than low-IC funds. This indicates that investors of high-IC funds

are not paying (by accepting lower fund performance during quiet market periods) for enhanced

portfolio performance during crisis periods.

25See Form PF, Section 2b, Question 42.
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5 Conclusion

We investigate a novel source of hedge fund fragility stemming from how diversified hedge funds are

with respect to their investors. Using a simple theoretical framework, we show that a hedge fund

with a high investor concentration (IC) is more exposed to the risk of idiosyncratic liquidity shocks

to its investors. Negative liquidity shocks to an investor can lead to outflows that are unexpected

and independent of the hedge fund’s fundamentals, and such outflows are more likely for a hedge

fund with ownership structure that is concentrated. We predict that to address the risk of large

unexpected outflows, a high-IC hedge fund holds a larger share of precautionary cash in its portfolio

and pays a liquidity premium. We test these hypotheses using a novel regulatory dataset on hedge

funds.

The SEC’s Form PF requires hedge funds to report the percentage of NAV held by the five

investors who are the largest investors in the fund. We use this five-investor concentration ratio

as our empirical measure of IC. First, we find that high-IC hedge funds have a greater probability

of experiencing large liquidity driven outflows. Second, in line with our prediction, high-IC hedge

funds make portfolio adjustments, including holding more precautionary cash, which help absorb

sudden large outflows. These results are not driven by differences in share restrictions, investment

strategy, or manager ownership.

Our paper complements the existing hedge fund literature that focuses on how hedge funds are

exposed to risk factors through the assets they hold. We show that the a fragile ownership structure

can also pose a substantial risk, and we analyze how hedge funds account for this risk. Our main

finding that high-IC hedge funds hold more precautionary cash is important for policymakers who

monitor the impact of hedge funds on market efficiency and stability. Further, awareness of the

mechanism documented in this paper is also important for hedge fund investors when requesting

risk disclosures and allocating their portfolios efficiently.
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Figure 1: Investor concentration by strategy

This figure shows the number of fund-quarter observations for each strategy and IC tercile. Every quarter, the hedge
funds are sorted based on IC. The first tercile contains the hedge funds with the lowest IC values.
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(a) Adjusted cash levels (actual)

1 2 3 4 5

IC quintile

0.00

0.05

0.10

0.15

0.20

0.25

P
ro

b
. 

o
u
tf

lo
w

 e
x
ce

e
d
s 

ca
sh

(b) Constant cash levels (hypothetical case)

Figure 2: Probability of outflows exceeding cash

This figure shows the quarterly probability of liquidity outflows exceeding cash for each IC quintile with 95% boot-
strapped confidence intervals. The liquidity flows are estimated with the regression model in 1 when setting P = 1.
The first quintile contains the hedge funds with the lowest IC values. Liquidity flows are assumed to be normally
distributed. For Plot (a), the probability is computed based on the median quarterly liquidity flows, standard devia-
tion of liquidity flows, and cash of each quintile. For Plot (b), the probability is again computed based on the median
quarterly liquidity flows and standard deviation of liquidity flows of each quintile, but the median cash level of the
first quintile is used to compute the probabilities for all quintiles.
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Figure 3: Correlation between investor concentration and share restrictions

This figure shows the correlation between IC and share restrictions at the fund level for the total sample and for the
strategy subsamples.
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Figure 4: Restrictions on withdrawals and redemptions

This figure illustrates the fraction of funds that are able to impose restrictions on investor withdrawals and re-
demptions. The depth of color, from darkest to lightest, correspond to the strength of fund’s restrictions, with each
observation assigned to a set depending on the strongest restriction the fund is able to impose. The four sets represent
the fraction of funds that (1) do not allow investors to withdraw their investment in the ordinary course; (2) are able
to suspend any investor withdrawal for 100% the fund’s NAV; (3) are able to materially restrict (via the imposition
of “gates”) any investor withdrawal for 100% the fund’s NAV; and (4) have restrictions on 0% of their fund’s NAV.
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Table 7: Investor concentration and risk-adjusted returns

This table reports the coefficient estimates and t-statistics when estimating the model given in equation (8)
with the estimation method of Fama and MacBeth (1973). The dependent variable is the quarterly average of
the monthly Fung-Hsieh seven factor risk-adjusted returns given in equation (7). The returns are deleveraged
where indicated. The independent variables are lagged IC, size, flows, share restriction, financing duration,
and manager stake. The data are quarterly from 2012:Q4 to 2017:Q4. Strategy fixed effects are used where in-
dicated. The significance of the coefficient estimate is indicated by * for p < 0.10, ** for p < 0.05, and *** for p < 0.01.

Dependent variable: Risk-adjusted returns, αit
ICit−1 -0.004** -0.005*** -0.003** -0.004***

(-2.720) (-3.713) (-2.760) (-3.628)

log(NAVit−1) -0.164*** -0.195*** -0.132*** -0.154***
(-4.973) (-5.350) (-6.209) (-6.609)

ShareResit−1 0.002*** 0.002*** 0.002*** 0.001***
(7.154) (8.195) (7.817) (8.762)

FinDurit−1 0.006*** 0.006*** 0.004*** 0.004***
(8.224) (7.755) (7.715) (7.514)

Fit−1 -0.008*** -0.008*** -0.007*** -0.007***
(-2.958) (-2.923) (-3.452) (-3.436)

MgrStakeit−1 -0.000 0.000 0.001 0.001
(-0.071) (0.012) (0.972) (0.506)

Strategy FE No Yes No Yes
Deleveraged No No Yes Yes

Observations 9,450 9,450 9,450 9,450
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Table 8: Investor concentration and flow-performance sensitivity

This table reports the coefficient estimates and t-statistics of the panel regression model given in equation (9). The
dependent variable are quarterly flows. The independent variables are lagged IC, flows, returns, return terciles,
return quintiles, size, share restriction, and manager stake. The coefficient estimates of the variables lagged flows,
size, share restriction, and manager stake are not shown. The data are quarterly from 2012:Q4 to 2017:Q4. Quarter
and fund fixed effects are used. The standard errors are clustered by quarter. The significance of the coefficient
estimate is indicated by * for p < 0.10, ** for p < 0.05, and *** for p < 0.01.

Dependent variable: Flows, Fit
(1) (2) (3) (4)

ICit−1 -0.021 -0.022 -0.021 -0.024*
(-1.502) (-1.585) (-1.604) (-1.827)

rit−1 × ICit−1 -0.000
(-0.257)

rit−1 × Irit−1<0 × ICit−1 -0.001
(-0.726)

r 2nd tercileit−1 × ICit−1 0.002
(0.270)

r 3rd tercileit−1 × ICit−1 -0.003
(-0.721)

r 2nd quintileit−1 × ICit−1 0.003
(0.246)

r 3rd quintileit−1 × ICit−1 0.004
(0.404)

r 4th quintileit−1 × ICit−1 0.008
(1.078)

r 5th quintileit−1 × ICit−1 -0.003
(-0.329)

rit−1 0.071* 0.036
(2.088) (1.083)

rit−1 × Irit−1<0 0.104
(1.610)

r 2nd tercileit−1 0.454
(1.360)

r 3rd tercileit−1 0.995***
(3.366)

r 2nd quintileit−1 0.561
(1.189)

r 3rd quintileit−1 0.633
(1.332)

r 4th quintileit−1 0.702*
(1.972)

r 5th quintileit−1 1.201***
(2.884)

Quarter FE Yes Yes Yes Yes
Fund FE Yes Yes Yes Yes
Additional controls Yes Yes Yes Yes

Observations 13,113 13,113 13,113 13,113
Adjusted R2 0.147 0.147 0.147 0.147
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Table 9: Investor concentration and portfolio changes under crisis scenarios

Column 1 shows the unconditional correlation between a hedge fund’s IC and expected portfolio changes under
different stress scenarios. Column 2 shows the coefficient estimates for γ in regression equation (10). The significance
of the γ estimate is indicated by * for p < 0.10, ** for p < 0.05, and *** for p < 0.01.

ρ(portfolio change, IC) γ

(i) Equity prices decrease 20% -0.076 -0.021*
(ii) Credit spreads increase 250bps -0.098 0.003
(iii) Implied volatilities increase 10 percentage points 0.069 0.010
(iv) Default rates increase 5 percentage points (corporate) -0.002 0.003
(v) Default rates increase 5 percentage points (ABS) -0.019 0.021
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Appendix A Simple theoretical framework

In this section, we formally explain the relationship between IC, flows, and precautionary cash. We

consider flows standardized by the NAV of the hedge fund, such that the flows of hedge fund i in

quarter t are given by

Fit =
F $
it

NAVit−1
, (11)

where F $
it are the flows in dollars. We decompose Fit into two orthogonal components,

Fit = FF
it + FL

it , (12)

where FF
it are the “fundamental flows” driven by the fundamentals of the hedge fund, such as past

performance, and FL
it are the “liquidity flows” caused by liquidity shocks to the investors of hedge

fund i. The distinction between the two types of flows is related to the Greenwood and Thesmar

(2011) model of concentrated ownership of stocks.26

We write the liquidity flows FL
it of a hedge fund with K investors as

FL
it+1 = W ′itLit+1, (13)

where W ′it = [wi1t, ..., wiKt], with wikt being the share of hedge fund i held by investor k in quarter

t, and L′it+1 = [l1t+1, ..., lKt+1], with lkt+1 being the liquidity shock to investor k in quarter t+1 as a

share of the investor’s portfolio. Assuming Lit+1 is normally distributed with mean 0K×1 = [0, ..., 0]′

and K ×K covariance matrix ΩL,it+1, we can write

FL
it+1 ∼ N(0K×1,W

′
itΩL,it+1Wit). (14)

Taking the variance of lkt+1 as σ2 for all k ∈ K and the correlation between the liquidity shocks

of any two investors as ρ, the equation (14) can be written as

σ2L,it+1 = σ2
( K∑

k=1

w2
ikt +

K∑
k=1

K∑
j=1,k 6=j

wiktwijtρ
)

= σ2
[
(1− ρ)

K∑
k=1

w2
ikt + ρ

]
. (15)

The summation
∑K

k=1w
2
ikt is the Herfindahl-Hirschman index (HHI), which is used to measure

concentration in a range of applications, for example, industry or wealth concentration. The larger

the concentration, the higher the HHI. The derivative of the liquidity flow variance with respect to

the HHI is given by
∂σ2L,it+1

∂
∑K

k=1w
2
ikt

= σ2(1− ρ). (16)

26Greenwood and Thesmar (2011) distinguish between liquidity-driven trading, which is defined as trading that
occurs because of liquidity shocks to investors who hold the asset, and active rebalancing, which is trading that
corresponds to changes in the weight of an asset in the investor’s portfolio that are driven by a change in the stock’s
fundamentals.
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If the liquidity shocks to investors are not perfectly correlated, then ρ < 1 and a higher concentration

of the investor base will lead to a higher liquidity flow variance, σ2L,it. If liquidity shocks to investors

are perfectly positively correlated, then ρ = 1 and the HHI does not affect the liquidity flow variance

because diversifying the investor base does not reduce the variance of the liquidity flows to the hedge

fund. The assumption ρ < 1 is arguably more realistic.27

In our empirical analysis, we do not observe the weight of every individual investor of a hedge

fund, which prevents us from computing the HHI exactly. However, we observe a comparable

concentration measure, the five-investor concentration ratio, which we refer to as the investor

concentration (IC) of a fund throughout the paper. In the Online Appendix, we compute lower

bounds and upper bounds on the HHI based on the five-investor concentration and the total number

of investors of each hedge fund. As a robustness check, we use the upper and lower bound of the

HHI instead of IC in the main regression specifications of our empirical analysis and find that our

results hold.

A high HHI increases the variance of the liquidity flows and therefore the probability of large

outflows. The higher variance also increases the probability of large inflows, but large inflows are

clearly less of a concern for a hedge fund manager and do not warrant any precautionary measures.

The probability of large outflows is the risk the manager cares about.

A hedge fund manager wants to avoid being forced to sell assets to cover redemptions. First,

having to exit an arbitrage trade early can force the hedge fund to realize losses. Second, having

to sell illiquid assets quickly can lead to steep price discounts due to price impact. Therefore, the

manager has an interest in holding precautionary cash. However, holding more cash comes with

an opportunity cost or a liquidity premium. We model the decision of the hedge fund manager

regarding how much cash to hold given this trade-off. The timing of the model is the following: in

period t the HF manager decides how much cash to hold based on the expected outflows in period

t+ 1. The manager of hedge fund i maximizes the following utility function

max
Cit

U = Et[−λI(Fit+1<−Cit) − Citψ], (17)

where Ct = C$
t /NAVt, with C$ being the cash in dollars. λ ≥ 0 is the cost when the outflows exceed

cash, for example, exiting an arbitrage trade early and realizing losses or selling illiquid assets at

steep discounts. I(Fit+1<−Cit) is an indicator variable that takes the value 1 if Fit+1 < −Cit and 0

otherwise. ψ ≥ 0 is the opportunity cost of holding cash or liquidity premium.

In this simple framework, HHI is not a choice variable of the hedge fund manager for the

following reasons. First, changing the HHI results in wide-ranging costs. For example, rejecting

the money of a large investor leads to forfeited management fees. Forcing a large investor out of

the fund can lead to relationship and reputational costs. Trying to attract small investors involves

27There is evidence that retail investors of mutual funds and pension funds often exhibit correlated trading patterns
because of financial advisors’ recommendations (see, for example, Dahlquist, Martinez, and Soderlind (2017) and Da,
Larrain, Sialm, and Tessada (2018)). However, such correlated trading patterns are likely less pronounced for hedge
fund investors, because they are thought to be more sophisticated than retail investors.
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search costs and potential regulatory costs, through higher disclosure requirements and forfeited

performance fees, due to rules such as those in SEC Regulation D governing investor requirements

for hedge funds. Second, changing the HHI is arguably substantially slower than adjusting cash;

buying or selling securities is likely faster than attracting new investors to a fund. The fact that we

empirically observe a large variation in IC values in our dataset and that IC values for a hedge fund

are quite persistent supports this assumption, as otherwise hedge funds would actively strive to

diversify their investor base and the IC values across different hedge funds would converge. Further,

we use an instrumental variable approach in our empirical analysis and find evidence in line with

hedge funds choosing cash based on the concentration of the investor base.

To simplify the analysis, we set the expected total flow variance equal to the liquidity flow

variance:

σ2TF,it+1 = ρσ2 + σ2(1− ρ)HHIit. (18)

This implies that the variance of flows driven by fundamentals is zero. However, in our empirical

analysis, we control for a range factors other than the concentration of the investor base that can

affect the variance of fundamental flows. When using the expected flow variance in equation (18)

and the normal distribution of the liquidity flows given in equation (14), the maximization problem

of the hedge fund manager becomes

max
Cit

U = −λΦ
( −Cit√

ρσ2 + σ2(1− ρ)HHIit

)
− Ctψ, (19)

where Φ(.) is the standard normal cumulative density function (CDF).

The first order condition with respect to Cit is

∂U

∂Cit
= λ

( 1√
ρσ2 + σ2(1− ρ)HHIit

)
φ
( −Cit√

ρσ2 + σ2(1− ρ)HHIit

)
− ψ = 0. (20)

where φ(.) is the standard normal probability density function (PDF). Solving for Cit yields the

solution28

Cit =

√
−ln

(√2πψ(ρσ2 + σ2(1− ρ)HHIit)1/2

λ

)
2(ρσ2 + σ2(1− ρ)HHIit). (21)

We illustrate the solution in two figures. Figure A.1 shows the sensitivity of the optimal Cit

with respect to HHIit for different values of λ. The other parameters are set such that optimal Cit

are comparable to our empirical values. We set ρ = 0.06, σ = 0.03, and ψ = 1.5. The higher the

concentration of the investor base, HHIit, the higher the optimal level of cash, Cit. Cash reacts

more strongly to changes in HHIit for larger values of λ, the cost of outflows exceeding cash (the

cost of forced asset sales), as seen by the steeper slopes of the curves.

28The solution only exists if 0 <
√

2πψ(ρσ2+σ2(1−ρ)HHIit)1/2
λ

< 1, which holds if ψ (the liquidity premium) is not
substantially larger than λ (the cost of forced asset sales). The solution satisfies the second order condition of the
maximization problem.
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Figure A.2 shows the sensitivity of the probability of flows being less than or equal to -20%

with respect to HHIit for different values of ρ, the correlation of investor liquidity shocks. An

increase in the concentration of the investor base leads to a higher probability of flows being less

than or equal to -20%. For higher values of ρ, the probability of large outflows is greater because

diversifying the investor base is less effective.
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Figure A.1: Sensitivity of cash to HHI

This figure shows the optimal level of Cit for a range of HHIit values and for different values of λ. The remaining
parameter values are ρ = 0.06, σ = 0.03, and ψ = 1.5.
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Figure A.2: Sensitivity of probability of large outflows to HHI

This figure shows the probability of flows being less than -20% for a range of HHIit values and for different values
of ρ. The remaining parameter values are ρ = 0.06, σ = 0.03, and ψ = 1.5.
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Appendix B Additional tables

Table B.1: Summary statistics on investor type

This table reports the average and standard deviation of the investor type share of hedge funds. The data are
quarterly from 2012:Q4 to 2017:Q4. For each investor type we have 15,586 fund-quarter observations. “US
Individuals” and “Non-US Individuals” include trusts owned by the individuals. “Pension plans” and “State or
municipal govt. entities” exclude governmental pension plans.

Investor types Average Standard deviation

US individuals 15.7 20.4
Non-US individuals 2.9 8.0
Broker-dealers 0.1 1.5
Insurance companies 2.6 5.5
Registered investment companies 1.2 4.5
Private funds 22.0 21.0
Non-profits 14.5 18.8
Pension plans 13.4 18.4
Banking or thrift institutions 1.0 5.4
State or municipal govt. entities 1.3 5.0
State or municipal govt. pension plans 9.0 15.7
Sovereign wealth funds and foreign official inst. 3.3 7.3
Unknown non-US 2.6 11.3
Other 10.5 14.9
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Table B.2: Liquidity flows first stage regression

This table reports the coefficient estimates and t-statistics when estimating the model given in equation (1) with
the estimation method of Fama and MacBeth (1973). The dependent variable is quarterly hedge fund flows. The
independent variables are lagged returns, flows, and share restrictions. The data are quarterly from 2012:Q4 to
2017:Q4. The significance of the coefficient estimate is indicated by * for p < 0.10, ** for p < 0.05, and *** for p < 0.01.

Dependent variable: Flows, Fit
(1) (2)

Constant -0.811*** -1.344***
(-3.140) (-5.580)

Fit−1 0.342*** 0.261***
(20.418) (18.007)

rit−1 0.295*** 0.240***
(7.305) (5.700)

Fit−2 0.180***
(8.935)

rit−2 0.272***
(8.286)

ShareResit−1 -0.002** 0.008**
(-2.044) (2.541)

ShareResit−2 -0.008**
(-2.662)

ShareResit−1 × Fit−1 0.000*** 0.000***
(5.105) (2.844)

ShareResit−1 × rit−1 -0.001*** -0.001***
(-10.536) (-6.862)

ShareResit−2 × Fit−2 0.000**
(2.502)

ShareResit−2 × rit−2 -0.000***
(-5.479)

Avg adjusted R2 0.222 0.283
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Table B.3: Investor concentration and flow-performance sensitivity (with strategy
fixed effects)

This table reports the coefficient estimates and t-statistics of the panel regression model given in equation (9). The
dependent variable are quarterly flows. The independent variables are lagged IC, flows, returns, return terciles,
return quintiles, size, share restriction, and manager stake. The coefficient estimates of the variables lagged flows,
size, share restriction, and manager stake are not shown. The data are quarterly from 2012:Q4 to 2017:Q4. Quarter
and fund strategy effects are used. The standard errors are clustered by quarter. The significance of the coefficient
estimate is indicated by * for p < 0.10, ** for p < 0.05, and *** for p < 0.01.

Dependent variable: Flows, Fit
(1) (2) (3) (4)

ICit−1 -0.000 0.000 0.000 -0.004
(-0.063) (0.106) (0.027) (-0.589)

rit−1 × ICit−1 0.001
(1.249)

rit−1 × Irit−1<0 × ICit−1 -0.000
(-0.466)

r 2nd tercileit−1 × ICit−1 0.002
(0.316)

r 3rd tercileit−1 × ICit−1 0.000
(0.065)

r 2nd quintileit−1 × ICit−1 0.008
(0.693)

r 3rd quintileit−1 × ICit−1 0.005
(0.533)

r 4th quintileit−1 × ICit−1 0.007
(0.875)

r 5th quintileit−1 × ICit−1 0.005
(0.563)

rit−1 -0.021 -0.068**
(-0.619) (-2.128)

rit−1 × Irit−1<0 0.251***
(2.930)

r 2nd tercileit−1 0.868**
(2.716)

r 3rd tercileit−1 0.924***
(3.487)

r 2nd quintileit−1 0.407
(0.838)

r 3rd quintileit−1 1.101**
(2.427)

r 4th quintileit−1 1.239***
(3.278)

r 5th quintileit−1 0.586
(1.277)

Time FE Yes Yes Yes Yes
Strategy FE Yes Yes Yes Yes
Additional controls Yes Yes Yes Yes

Observations 13,113 13,113 13,113 13,113
Adjusted R2 0.225 0.227 0.227 0.228
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Appendix C Data appendix

C.1 Hedge fund sample construction

The first Form PF filings for Large Hedge Fund Advisers occurred in 2012:Q2. However, we exclude

the 2012:Q2 and 2012:Q3 filings because of data quality concerns. We construct a quarterly hedge

fund data sample from 2012:Q4 to 2017:Q4, where reporting dates are assigned to their calendar

quarters.

Our analysis focuses on qualifying hedge funds that have to file Form PF at a quarterly fre-

quency. A Qualifying Hedge Fund has a NAV of at least US$500 million as of the last day in

any month in the fiscal quarter immediately preceding the adviser’s most recently completed fiscal

quarter.29 The US$500 million threshold might raise concerns that a lot of hedge funds drop in

and out of our sample. However, in our total sample, relatively few observations are from hedge

funds that have reporting gaps. Out of a total sample of 15,587 fund-quarter observations, 1,060

observations are from hedge funds with reporting gaps.

We impose several filters to clean the raw Form PF data. As described in Section 3, hedge fund

advisers are allowed to file feeder hedge funds separately. Therefore, the raw Form PF data include

a few small hedge funds for which several questions in Form PF are unanswered. To avoid including

such hedge funds in our sample, we require a hedge funds’ NAV to be larger than US$25 million.

Second, we also require the GAV and the gross notional exposure, which is the summation of the

long and short values from Form PF’s Question 30, to be larger than or equal to the NAV. Third,

we delete hedge funds that do not answer Form PF’s Question 20, which asks for the investment

strategy of the hedge fund, or hedge funds that state that they invest in other funds, as such

funds generally file Form PF inconsistently. Also, hedge funds with obvious return outliers, for

example, 8888.88, are deleted from our sample. Further, we require that a hedge fund’s ratio of

unencumbered cash over NAV is between 0 and 1. Lastly, we require that the matching between

Form PF and ADV is successful for each hedge fund in the sample. 275 fund-quarter observations

could not be matched.

We require that the number of investors in the fund be greater than five and the manager stake

be less than or equal to 50%. While our empirical results are robust to removing these data filters,

as described in Section 3, we apply these filters for two reasons that improve the precision of our

estimates. First, because the IC variable is a five-investor concentration measure, it fails to capture

variation in the concentration of the investor base for hedge funds with five or fewer investors,

which will all have an IC equal to 100%. Second, theses filters help to exclude family offices and

29While the threshold for determining a Qualifying Hedge Fund is in terms of net assets, the thresholds for filing
Form PF and for the Large Hedge Fund Adviser classification are on a gross basis. When determining whether
a reporting threshold is met, advisers must aggregate private funds, parallel funds, dependent parallel managed
accounts, and master-feeder funds. They must also include these items for their related persons that are not separately
operated. While the determination of whether a set of funds in a parallel fund structure or master-feeder arrangement
constitutes a Qualifying Hedge Fund is on an aggregated basis, advisers are permitted to report fund data either
separately or on an aggregated basis. Thus, some funds in our sample have a NAV of less than the Qualifying Hedge
Fund threshold of US$500 million. For additional description of the Form PF hedge fund data, see Flood, Monin,
and Bandyopadhyay (2015) and Flood and Monin (2016).
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predominantly manager-owned funds in our analysis. In a family office, the investors of the fund

know each other and can smooth out liquidity shocks amongst each other. Also, the hedge fund

manager likely knows the investors personally, which reduces the asymmetric information about

liquidity outflows between investors and the hedge fund manager. The hedge fund manager can

learn about the large outflows long before the redemption request is filed, which mitigates the

need for holding precautionary cash. If the manager owns the majority of the hedge fund, then

the asymmetric information between hedge fund manager and investor base is also clearly limited.

Therefore, the mechanism of how IC affects the probability of large liquidity outflows is likely

not applicable to these hedge funds. There are 1,131 fund-quarter observations with five or fewer

investors. IC is equal to 100 for 4,140 fund-quarter observations. We filter out bad data with IC

equal to 0 for 146 fund-quarter observations. The manager stake is greater than 50% for 1,128

fund-quarter observations. A large share of fund-quarter observations that are excluded from our

sample violate multiple of these sample restrictions.

C.2 Hedge fund investment strategy classification

The methodology used for classifying a hedge fund’s broad strategy is as follows. First, we check

the Question 20 description field for the “Other” category to determine if the description can be

directly mapped to one of the other broad categories. For example, a description of “Relative Value

Fixed Income” is reclassified from “Other” to “Relative Value”. Next, the data are normalized so

that the sum of each hedge fund’s allocation across the 22 sub-categories listed in the form equals

100% of their NAV. These normalized values are then aggregated to the broad strategy categories

(credit, equity, event driven, fund of funds, macro, managed futures, multi-strategy, and relative

value) and an “other” category. A hedge fund is considered to use a given strategy if 75% or more

of its normalized assets are allocated to that strategy. If there is not a strategy to which at least

75% of the normalized assets are allocated, then the fund is classified as a multi-strategy fund. We

discard observations from hedge funds identified as “fund of funds” or “managed futures” as these

are too few to include given confidentiality restrictions.
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Table C.1: Variable Definitions

This table presents definitions of the main variables used in this paper. The first column gives the variable name. The
second column includes a short description. The last column gives the reference to the raw data source in Form PF
(https://www.sec.gov/about/forms/formpf.pdf) or Form ADV (https://www.sec.gov/about/forms/formadv.pdf).
Detailed descriptions and summary statistics of these variables are given in section 3.

Variable Name Description Source

ICit

The percentage of fund equity held by the five investors
with the largest investments in the fund (the
five-investor concentration ratio).

PF Q15

NAVit
Net asset value or the amount of investor equity of the
fund.

PF Q9

Leverageit Balance sheet leverage, GAV/NAV . PF Q8, Q9

git Gross hedge fund returns. PF Q17

rit Net hedge fund returns (net-of-fees). PF Q17

Fit
Investor flows to a hedge fund,

Fit =
NAVit−NAVit−1×(1+rit)

NAVit−1

PF Q9, Q17

Strategyit

Investment strategy (Credit, Equity, Event Driven,
Macro, Managed Futures, Relative Value,
Multi-strategy, or Other). See Appendix C.2.

PF Q20

Cashit Unencumbered cash. PF Q33

PortIlliqit
The average time it would take to liquidate assets in a
hedge fund’s portfolio (in days).

PF Q32

FinDurit
The weighted average maturity of a hedge fund’s
borrowing (in days).

PF Q46

ShareResit
The weighted average time it would take for investors to
withdraw all the fund’s NAV (in days).

PF Q50

HasGatesit
Indicator for whether there are restrictions on investor
withdrawals of the fund’s NAV. See section 4.5.1.

PF Q49

MgrStakeit
The percent of NAV owned by the fund’s managers or
related persons.

ADV Schedule D,
Section 7.B.(1), Q14

NumInvestorsit The number of investors in the fund.
ADV Schedule D,
Section 7.B.(1), Q13

MinInvit
The minimum required investment from an investor in
the fund.

ADV Schedule D,
Section 7.B.(1), Q12
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