Predicting Distress (and Identifying Interdependencies) among European Banks

Tuomas Peltonen (ECB)*

joint with Frank Betz, Silviu Oprica and Peter Sarlin

31 May 2013 Fed Cleveland & OFR conference on "Financial Stability Analysis: Using the Tools, Finding the Data"

The views and results presented here are of authors' own and may not represent those of the ECB or the EIB.

Tuomas Peltonen

Predicting Distress in European Banks

May 2013 1

Motivation

- The global financial crisis brought the banking systems in several EU countries to the verge of collapse
- By the end of 2011, the total financial crisis related state aid by the EU Member States had exceeded more than €1.6 trl (around 13% of EU GDP)
- The costs in terms of lost output are probably even higher (e.g. in Dell Arriccia et al. (2010), Laeven and Valencia (2010) estimate the average cost of a banking crisis to be 20-25% of GDP)

This Project...

- Presents one of the first early-warning models for (a large set of individual) *European* banks based on individual bank balance sheets combined with macro-financial vulnerabilities
- It aims at predicting *vulnerable states* of banks (pre-distress periods), where a suitable trigger could lead the bank to be in distress
- Uses a state-of-the-art *evaluation framework* of early-warning signals (including taking into account the importance of individual banks)
- (Extension: include estimated bank *interdependences* (network effects) to the early-warning model)

Measuring bank distress

- 1) Bankruptcies, liquidations and defaults (sources: Moody's, Fitch and Bankscope)
 - Captures direct bank failures
- 2) <u>State aid</u> (Sources: EC, Bloomberg and Reuters)
 - A bank is defined to be in distress if
 - a) it receives a capital injection from the state or
 - b) it participates in an asset relief programme (asset protection or asset guarantees). It does not capture central bank liquidity support or guarantees on banks' liabilities
- 3) <u>Mergers in distress</u> (Sources: Bloomberg and Bankscope)
 - Merged entities are defined to be in distress if
 - a) a parent receives state aid within 12 months after merger or
 - b) if a merged entity has a coverage ratio < 0 within 12 months before the merger (where the coverage ratio is denied as the ratio of equity + loan loss reserves - non-performing loans to total assets)

Tuomas Peltonen

Predicting Distress in European Banks

Sample & distress events

- 546 EU banks with at least €1 bln in assets (potential sample selection bias)
- Quarterly data from 2000Q1-2011Q4
- 194 bank-quarter distress events

Categories	Distress	Pre-distress
Direct failure	13	110
Bankruptcy & liquidation	3	24
Defaults	13	96
State aid	153	892
Capital injection	113	763
Asset protection	33	180
Asset guarantee	23	127
Distressed mergers	35	228
Merger with state aid	28	179
Merger with coverage ratio < 0	13	105
		 Banks Distross events (quarters)
		 Distress events (quarters)
4 - I		
	▋▁▋Ĺ▖	B L L L L
AT BE BG CZ DE DK ES FI FR GB	GR HU IE IT	LU LV MT NL PL PT SE SI SK
as Peltonen Predicting Dis	tress in European	Banks May 2013 5

Explanatory variables

- 1) Bank-specific <u>balance-sheet</u> indicators
 - Publicly available CAMELS variables (Capital Adequacy, Asset Quality, Management Quality, Earnings Performance, Liquidity, and Sensitivity to Market Risk)
- 2) Country-specific <u>banking sector</u> indicators
 - Variables such as banking system leverage, asset growth, loans/deposits, etc.
- 3) Country-specific macro-financial indicators
 - Structural internal and external imbalance indicators based on the EU Macroeconomic Imbalance Procedure (MIP) variables,
 - Asset prices (house and stock prices, government bond spread),
 - Business cycle variables (real GDP and inflation)

Explanatory variables

	Variable	Definition and transformation	Source
С	Equity to assets	Total Equity / Total Assets	Bloomberg
	Tier 1 ratio	Tier 1 Capital Ratio	Bloomberg
А	Impaired assets	Non Performing Assets / Total Assets	Bloomberg
	Reserves to impaired assets	Reserves for Loan Losses / Non Performing Assets	Bloomberg
	Loan loss provisions	Provisions for Loan Losses / Total Average Loans	Bloomberg
Bank-	Total assets (growth rate)	Growth rate of total assets	Bloomberg
specific	Debt to equity	Total Liabilities / Total Equity	Bloomberg
halanco M	Cost to income	Operating Costs / Operating Income	Bloomberg
Dalance	ROA	Return on Assets	Bloomberg
sneet E	ROE	Return on Equity	Bloomberg
variables	Net interest margin	Net Interest Margin	Bloomberg
L	Interest expenses to liabilities	Interest Expenses / Total Liabilities	Bloomberg
	Deposits to funding	Deposits / Funding	Bloomberg
	Loans to deposits	Total Loans / Customer Deposits	Bloomberg
S	Share of trading income	Trading Income / Operating Income	Bloomberg
	Loans to assets	Total Loans / Total Assets	Bloomberg
	Financial liabilities (annual growth rate)	Growth rate of (Total Assets - Capital and Reserves)	ECB MFI statistics
Country-	Non-core liabilities (annual growth rate)	Growth rate of (Total Liabilities - Capital and Reserves - Deposits)	ECB MFI statistics
specific	Debt securities to liabilities	Debt securities to liabilities	ECB MFI statistics
banking	Mortgages to loans	Mortgages to Total Loans	ECB MFI statistics
sector	Debt to equity	(Total Liabilities - Capital and Reserves) / Capital and Reserves	ECB MFI statistics
variables	Loans to deposits	Total Loans / Deposits	ECB MFI statistics
	Gross derivatives to capital and reserves (annual growth rate	Growth rate of ((Positive Derivatives + Negative Derivatives) / Capital an	ECB MFI statistics
	GDP (annual growth rate)	Growth rate of real GDP	Eurostat
	Inflation (annual growth rate)	Growth rate of HICP index	Eurostat
	House price	Growth rate of house price index	ECB
	Stock price	Growth rate of stock price index	Bloomberg
Country-	10-year bond spread	Long-term government bond yield - German long-term government	Bloomberg
specific	Government debt to GDP	General government debt as % of GDP	Eurostat / Alert Mechanism Report
macro-	Private sector credit flow to GDP	Private sector credit flow as % of GDP	Eurostat / Alert Mechanism Report
	Private sector credit to GDP gap	Moving sum of 4 quarters of private sector credit / GDP - HP filtered	Haver Analytics / IMF IFS
financiai	Unemployment rate (3-year average)	3 year average of unemployment rate	Eurostat / Alert Mechanism Report
variables	Current account balance to GDP (3-year average)	3 year average of current account balance as a % of GDP	Eurostat / Alert Mechanism Report
	International investment position to GDP	Net International Investment Position as a % of GDP	Eurostat / Alert Mechanism Report
	Real effective exchange rate (3-year % change)	% change (3 years) of Real Effective Exchange Rate, HICP deflators	Eurostat / Alert Mechanism Report
	Export market share (3-year % change)	% change (5 years) in export market shares	Eurostat / Alert Mechanism Report
	Unit labour cost (3-year % change)	% change (3 years) in nominal unit labour cost	Eurostat / Alert Mechanism Report

Note: Variables in italics are not included in the benchmark model due to data availability. Including them reduces the number of banks for which data can be retrieved by about 65%.

Tuomas Peltonen

Predicting Distress in European Banks

Evaluation framework

 Apply extended evaluation framework of Demirgüc-Kunt and Detragiache (2000) and Alessi and Detken (2011) usefulness criterion as Sarlin (2012):

- Find the threshold t that minimizes a loss function that depends on
 - policymakers' preferences μ between Type I ($T_1 = FN/(FN + TP)$) errors (*missing crises*) and Type II errors ($T_2 = FP/(TN + FP)$) (*false alarms*)
 - and unconditional probabilities of the events P_c

$$L(\mu) = \mu P_c T_1 + (1 - \mu)(1 - P_c) T_2$$

Evaluation framework (continues)

• Define <u>absolute usefulness</u> U_a as the difference between the loss of disregarding the model (available usefulness) and the loss of the model:

$$U_a = \min[\mu P_{c'}(1 - \mu)(1 - P_{c'})] - L(\mu)$$

• Define the <u>relative usefulness</u> U_r as the ratio of absolute usefulness to available usefulness (i.e. <u>ratio relative to a "perfect" model with $L(\mu)=0$):</u>

$$U_r = U_a / \min[\mu P_c, (1 - \mu)(1 - P_c)]$$

 Also, we compute the usefulness when including observation-specific misclassification costs by letting the policymaker define the importance w_j of each bank-year observation, e.g. (systemic importance, size, etc.):

$$T_{w1} \in [0,1] = \sum_{j=1}^{N} w_j F N_j / \left(\sum_{j=1}^{N} w_j T P_j + \sum_{j=1}^{N} w_j F N_j \right)$$

Estimation and calibration

- Use pooled logit model to predict <u>vulnerable states</u> of banks, i.e. periods that precede bank distress by up to 8 quarters (pre-distress periods)
- Recursive estimation:
 - Estimation sample: increasing window starting from first in-sample 2000Q1-2006Q4
 - Out-of-sample prediction: for 2007Q1-2011Q4, predict each quarter *t* with data up to *t*-1
 - Time-varying optimal threshold for evaluation of the model signal
- <u>Highly imbalanced sample</u>: the share of pre-distress periods in the out-of-sample prediction sample is 11% (whole sample 7%).
 - Thus, set the benchmark preference parameter $\mu=0.9$ as an attempt to build an EWS with imbalanced data implicitly necessitates a policymaker to be more concerned about the rare class

Policymakers' preferences

• *Out-of-sample* prediction for 2007Q1-2011Q4

	Benchmark model										
μ	Predicted distress	$U_r(\mu)$	$U_r(w_i,\mu)$								
0.0	0	605	0	NA	NÁ						
0.1	0	605	0	0.00	0.00						
0.2	0	605	0	0.00	0.00						
0.3	0	605	0	0.00	0.01						
0.4	20	585	26	-0.03	0.06						
0.5	78	527	91	-0.02	0.11						
0.6	119	486	161	0.02	0.19						
0.7	187	418	262	0.12	0.32						
0.8	243	362	414	0.23	0.26						
0.9	336	269	746	0.37	0.16						
1.0	605	0	5025	NA	NA						

Predicting Distress in European Banks

Tuomas Peltonen

Predictive performance

• *Out-of-sample* prediction for 2007Q1-2011Q4

	(1)	(2)	(3)	(4)
	Benchmark	Bank	Banking sector	Macro-financial
μ	$U_r(\mu)$	$U_r(\mu)$	$U_r(\mu)$	$U_r(\mu)$
0.6	0.02	0.00	0.00	0.00
0.7	0.12	0.02	-0.01	-0.01
0.8	0.23	0.05	0.01	0.10
0.9	0.37	0.16	0.02	0.24
R^2	0.32	0.17	0.06	0.14
N	10898	10898	10898	10898

The benchmark model in column (1) includes bank-specific balance sheet variables, banking sector balance sheet items, and macro-financial indicators. The models in columns (2) - (4) only include the variable group of the header. The frequency of pre-distress events in the sample is 7%. R^2 and *N* refer to the whole sample 2000Q1-2011Q4.

Tuomas Peltonen

A case study

• Out-of-sample prediction of distress probability from 2007Q1-2011Q4

Sample of large European banks

• Out-of-sample prediction of distress probabilities (in 2012Q2)

Research in progress

- Does the predictive performance improve if the bank early-warning model is augmented with <u>estimated bank interdependencies</u>?
- <u>Motivation</u>: Banking systems are highly <u>interconnected</u>. Existing earlywarning models have focused solely on individual bank distress
- <u>Idea</u>: To take into account estimated interconnectedness among banks in an early-warning model
- Implementation:
 - Estimate a tail-dependence network using quantile regression of stock returns of bank *i* on the unconditional VaR exceedances of all other banks in the sample (10th percentile). Use LASSO to obtain the set of relevant tail-risk drivers (as in Hautsch et al., 2012) and construct a tail-dependence network
 - Predict bank distress focusing on individual bank distress
 - Use an indicator of signals in a bank's neighbourhood to predict distress in the interconnected banking system

Estimated tail dependence network for large European banks

Network estimation results

• Out-of-sample prediction from 2007Q1-2011Q4

	(1)	(2)	(3)	(4)
	Benchmark	Network	Country	EU
Network		3.91***		
Country			0.22***	
EU				0.03***
R^2	0.32	0.41	0.39	0.43
N	5783	5783	5783	5783
μ	$U_r(\mu)$	$U_r(\mu)$	$U_r(\mu)$	$U_r(\mu)$
0.9	0.14	0.30	0.18	0.22

The performance of the benchmark model on this sample is shown in column (1). The models in columns (2) - (4) also include the signals through the neighborhood relation in the header. The frequency of pre-distress events in the sample is 13%.

Tuomas Peltonen

The main findings are ...

- One of the first early-warning models for European banks, including a signal evaluation framework for a policymaker, and a new dataset of bank distress in Europe
- Results highlight the importance to complement bank-specific vulnerabilities with indicators for <u>macro-financial imbalances as well as estimated</u> <u>interconnections between banks</u>
- The model allows the evaluation of the <u>sources of vulnerabilities</u>, which is particularly useful for policy purposes
- The model evaluation framework allows the calibration of the model signals according to <u>policymaker's preferences</u> between Type I and II errors. It also allows the policymaker to focus (and weigh more) on distress signals coming from e.g. systematically important banks

Thank you for your attention!

contact: <u>tuomas.peltonen@ecb.europa.eu</u>

Extra slides

Estimates - CAMELS

	(1)	(2)	(3)	(4)
	Benchmark	BS Model	BSI Model	MF Model
Intercept	-3.85***	-3.09***		
Equity to assets	-0.62***	-0.72***		
Size (total assets)	0.83***	0.68***		
Debt to equity	-0.03	-0.14.		
ROA	-0.27**	-0.12		
Cost to income	-0.03	-0.05		
ROE	-0.12.	-0.30***		
Interest expenses to liabilities	0.43***	0.37***		
Deposits to funding	0.45***	0.63***		
Share of trading income	-0.05	-0.07.		
R^2	0.32	0.17	0.06	0.14
N	10898	10898	10898	10898

The benchmark model in column (1) includes bank-specific balance sheet variables (BS), banking sector balance sheet items (BSI), and macro-financial indicators (MF). The models in columns (2) - (4) only include the variable group in the header.

Estimates - banking sector

	(1)	(2)	(3)	(4)
	Benchmark	BS Model	BSI Model	MF Model
Financial liabilities	0.21***		0.02	
Non-core liabilities	0.13*		0.19***	
Debt securities to liabilities	0.22*		-0.32***	
Mortgages to loans	0.18*		0.54***	
Debt to equity	0.27***		0.34***	
Loans to deposits	0.26***		0.20***	
Gross derivatives to capital and reserves	-0.06		-0.05	
R^2	0.32	0.17	0.06	0.14
Ν	10898	10898	10898	10898
The benchmark model in column (1) includ	les hank-spec	ific balance	sheet variabl	es (BS)

The benchmark model in column (1) includes bank-specific balance sheet variables (BS), banking sector balance sheet items (BSI), and macro-financial indicators (MF). The models in columns (2) - (4) only include the variable group in the header.

Estimates - macro-financial

	(1)	(2)	(3)	(4)
	Benchmark	BS Model	BSI Model	MF Model
GDP	-0.17.			-0.22**
Inflation	0.36***			0.46***
House price gap	0.48***			0.36***
Stock price gap	0.20**			0.13*
10-year bund spread	0.09			0.03
Government debt to GDP	0.31***			-0.17*
Private sector credit flow to GDP	-0.42***			-0.18*
Private sector credit to GDP gap	0.30***			0.47***
Unemployment rate	0.27***			0.08
Current account balance to GDP	0.26**			0.23**
International investment position to GDP	-0.85***			-0.46***
Real effective exchange rate	0.30***			0.31***
Export market share	-0.30***			-0.52***
Unit labour cost	0.01			-0.28**

The benchmark model in column (1) includes bank-specific balance sheet variables (BS), banking sector balance sheet items (BSI), and macro-financial indicators (MF). The models in columns (2) - (4) only include the variable group in the header.

Predictive performance

					Posit	ives	Negat	tives								
Preferences	ТР	FP	TN	FN	Precision	Recall	Precision	Recall	Accuracy	FP rate	FN rate	$U_a(\mu)$	$U_r(\mu)$	$U_a(\mu,w_j)$	$U_r(\mu,w_j)$	AUC
$\mu = 0.0$	0	0	5025	605	NA	0.00	0.89	1.00	0.89	0.00	1.00	0.00	NA	0.00	NA	0.80
$\mu = 0.1$	0	0	5025	605	NA	0.00	0.89	1.00	0.89	0.00	1.00	0.00	0 %	0.00	0 %	0.80
$\mu = 0.2$	0	0	5025	605	NA	0.00	0.89	1.00	0.89	0.00	1.00	0.00	0 %	0.00	0 %	0.80
$\mu = 0.3$	0	0	5025	605	NA	0.00	0.89	1.00	0.89	0.00	1.00	0.00	0 %	0.00	1 %	0.80
$\mu = 0.4$	20	26	4999	585	0.43	0.03	0.90	0.99	0.89	0.01	0.97	0.00	-3 %	0.01	6 %	0.80
$\mu = 0.5$	78	91	4934	527	0.46	0.13	0.90	0.98	0.89	0.02	0.87	0.00	-2 %	0.01	11 %	0.80
$\mu = 0.6$	119	161	4864	486	0.43	0.20	0.91	0.97	0.89	0.03	0.80	0.00	2 %	0.03	19 %	0.80
$\mu = 0.7$	187	262	4763	418	0.42	0.31	0.92	0.95	0.88	0.05	0.69	0.01	12 %	0.06	32 %	0.80
$\mu = 0.8$	243	414	4611	362	0.37	0.40	0.93	0.92	0.86	0.08	0.60	0.02	23 %	0.04	26 %	0.80
μ=0.9	336	746	4279	269	0.31	0.56	0.94	0.85	0.82	0.15	0.44	0.03	37 %	0.01	16 %	0.80
$\mu = 1.0$	605	5025	0	0	0.11	1.00	NA	0.00	0.11	1.00	0.00	0.00	NA	0.00	NA	0.80

Notes: The table reports results for real-time out-of-sample predictions of a logit model with optimal thresholds w.r.t. Usefulness with given preferences. Bold entries correspond to the benchmark preferences. Thresholds are calculated for μ ={0.0,0.1,...,1.0} and the forecast horizon is 8 quarters. The table also reports in columns the following measures to assess the overall performance of the models: TP = True positives, FP = False positives, TN= True negatives, FN = False negatives, Precision positives = TP/(TP+FP), Recall positives = TP/(TP+FN), Precision negatives = TN/(TN+FN), Recall negatives = TN/(TN+FP), Accuracy = (TP+TN)/(TP+TN+FP+FN), absolute and relative usefulness U_a and U_r (see formulae 1-3), and AUC = area under the ROC curve (TP rate to FP rate). See Section 4.1 for further details on the measures.

ROC curves

Predicting Distress in European Banks